HARMONIC ANALYSIS

PIOTR HAJLASZ

1. MAXIMAL FUNCTION

For a locally integrable function f € Li (R") the Hardy-Littlewood maz-
imal function is defined by

My () = sup]é @y, wem

r>0

The operator M is not linear but it is subadditive. We say that an operator
T from a space of measurable functions into a space of measurable functions
is subadditive if

IT(f1 + fo) ()| < |Tfi(x)| + |Tfo(z)] ae.
and
|T(kf)(z)| = |k||Tf(z)| for ke C.

The following integrability result, known also as the mazimal theorem, plays
a fundamental role in many areas of mathematical analysis.

Theorem 1.1 (Hardy-Littlewood-Wiener). If f € LP(R™"), 1 < p < oo,
then Mf < 0o a.e. Moreover

(a) For f € LY(R")
(1.1) o Mf(x) >t} < 5”/ f| for allt>0.
t Rn

(b) If f € LP(R"), 1 < p < o0, then M f € LP(R™) and
p \VP
Ml <2057 (20 Il for 1 <p <,

[Mflloo < 1]l -
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The estimate (1.1) is called weak type estimate.

Note that if f € L'(R") is a nonzero function, then M f ¢ L'(R"). Indeed,
if A= fB(OR) |f] > 0, then for |z| > R we have

A
M) 2 Jé(x,mw Iz my

and the function on the right hand side is not integrable on R™. Thus the
statement (b) of the theorem is not true for p = 1.

If g € L*(R™), then the Chebyschev inequality

1
o la@] >t <5 [ gl fort>0

is easy to prove. Hence the inequality at (a) would follow from boundedness
of of Mf in L!. Unfortunately Mf is not integrable and (a) is the best
what we can get for p = 1.

Before we prove the theorem we will show that it implies the Lebesgue
differentiation theorem.

Theorem 1.2 (Lebesgue differentiation theorem). If f € LL (R™), then

lim fly)dy = f(z) a.e.
r—0 B(z,r)

Proof Since the theorem is local in nature we can assume that f € LY(R").
Let f(x UCB (o) f(y) dy and define

Qf(x) = limsup fr(x) — ligl_)ionf fr(z).

r—0

It suffices to prove that Qf = 0 a.e. and that f, — f in L'. Indeed, the first
property means that f. converges a.e. to a measurable function g while the
second one implies that for a subsequence f,, — f a.e. and hence g = f a.e.

Observe that Qf < 2M f and hence for any € > 0 Theorem 1.1(a) yields

2 Qf(2) >e}|</n

Let h be a continuous function such that ||f — h|l; < €2 Continuity of h
implies 2h = 0 everywhere and hence

Qf <Q(f —h)+Qh =Q(f = h),
SO

o >e)l < -m>eH<C [ 1r-n<ce.
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Since € > 0 can be arbitrarily small we conclude Qf = 0 a.e. We are left
with the proof that f, — f in L'. We have

/n |fr(2) = f(2)]dz < /n]i(m)|f(y)—f(x)|dydaz

- /aﬁmﬂvu+w—f@wwm

(12) — ity Sy,
7"')
where f, () = f(z +y). Since f, — f in L' as y — 0 the right hand side of
(1.2) converges to 0 as r — 0. O
If fe LIIOC(R”)7 then we can define f at every point by the formula
(1.3) f(z) :=lim sup][ fly)dy.
r—0 B(z,r)

According to the Lebesgue differentiation theorem this is a representative
of f in the class of functions that coincide with f a.e.

DEFINITION. Let f € LIIOC(R”). We say that x € R™ is a Lebesgue point of f
if

lim fly)— f(z)|dy=0,

i f )~ 1)
where f(x) is defined by (1.3).

Theorem 1.3. If f € L _(R"), then the set of points that are not Lebesgue

loc
points of f has measure zero.

Proof. For ¢ € Q let E. be the set of points for which
(1.4) lim [f(y) —cldy =[f(z) — |
r—0 B(z,r)
does not hold. Clearly |E;| = 0 and hence the set £ = (J g Ec has measure
zero. Thus for x € R"\ E and all ¢ € Q, (1.4) is satisfied. If z € R" \ E

and f(x) € R, approximating f(z) by rational numbers one can easily check
that

lim [f(y) = f(@)|dy = [ f(x) — f(z)] = 0.

r—0 B(z,r)
The proof is complete. g

We can generalize the above result as follows. We say that € R™ is a

p-Lebesgue point of f € Lfoc, 1<p<xif
imf ()~ f@)Pdy = 0.
r—0 Blz,r)

The same method as the one used above leads to the following result that
we leave an an exercise.
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Theorem 1.4. If f € L (R"), 1 < p < oo, then the set of points that are

loc
not p-Lebesgue points of f has measure zero.

DEFINITION. Let E C R™ be a measurable set. We say that x € R" is a
density point of E if
_|B(@,r)NE| _

1 =1.
r0 [Bx,r)]

Applying the Lebesgue theorem to f = xg we obtain

Theorem 1.5. Almost every point of a measurable set E C R™ is its density
point and a.e. point of R™ \ E is not a density point of E.

In the Lebesgue theorem we have seen that the averages of f over balls
converge to f(x) and it is natural to inquire if we can replace balls by other
sets like cubes or even balls, but not centered at .

DEFINITION. We say that a family F of measurable subsets of R" is regular
at x € R™ if

(a) The sets are bounded and have positive measure;

(b) There is a sequence S, € F with |S,| — 0;

(c¢) There is a constant C' > 0 such that every S € F is contained in a
ball B D S centered at x such that |S| > C|B].

Example. The family of all cubes ) in R™ such that the distance of @ to
x is no more than C'diam @) is regular.

Theorem 1.6. If f € L (R"), z is a Lebesgue point of f, and F is reqular
at x, then

Proof. For S € F denote by rg the radius of a ball Bg = B(z,rg) such
that S C Bg and |S| > C|Bg|. Clearly if |S| — 0, then rg — 0. We have

\7[ Sy - 1@)| < 15w - 1@ dy
S S
1 — f(z
< |8 /lef(y) F()| dy
< o |7y - F@)ldy— 0

Bs

as |S| — 0. o
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Note that if F is a regular family at 0 and we define the maximal function
associated with F by

Mz f(z) = sup f 1o = )l dy.
SeFJS
then it is a routine calculation to show that

(1.5) Mz f(z) < CMf(z),

so My satisfies the claim of Theorem 1.1 (with different constants). In
particular M £ is a bounded operator in LP, 1 < p < cc.

In the proof of Theorem 1.1 we will need the following two results.

Theorem 1.7 (Cavalieri’s principle). If u is a o-finite measure on X and
® : [0,00) — [0,00) is increasing, absolutely continuous and ®(0) = 0, then

[ atsman= | T Ou{|f] > 1)) di
X 0

Proof. The result follows immediately from the equality

| ats@Ddut) = | /'f £) dt dp(x)

and the Fubini theorem. O

Corollary 1.8. If p is a o-finite measure on X and 0 < p < oo, then

/ P du=p / Tl > ) di
X 0

The next result has many applications that go beyond the maximal the-
orem.

Theorem 1.9 (5r-covering lemma). Let B be a family of balls in a metric
space such that sup{diam B : B € B} < oco. Then there is a subfamily of
pairwise disjoint balls B C B such that

lJBc | 5B
BeB BeB’

If the metric space is separable, then the family B’ is countable and we can
arrange it as a sequence B' = {B;}°,, so

U BCGE)BZ‘.

BeB i=1

Remark. Here B can be either a family of open balls or closed balls. In
both cases proof is the same.
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Proof. Let sup{diam B : B € B} = R < co. Divide the family B according
to the diameter of the balls

R

Clearly B = U;‘;l F;. Define By C Fi to be the maximal family of pairwise
disjoint balls. Suppose the families By, ...,B;_1 are already defined. Then
we define B; to be the maximal family of pairwise disjoint balls in

j—1
Fin{B: BnNB' =0 forall B € | JB;}.

i=1
Next we define B’ = (J;Z, B;. Observe that every ball B € F; intersects
with a ball in ngl B;. Suppose that BN By # 0, By € ngl B;. Then

diam B < i =2. E < 2diam B;
271 27
and hence B C 5B;. O
Proof of Theorem 1.1. (a) Let f € L'(R") and E; = {x : Mf(z) > t}.

For x € E;, there is r, > 0 such that

£ st
B(z,re)

B(a,ra)| <t / 51,

B(z,rg)

SO

Observe that sup,cp, 1 < oo, because f € L'(R™). The family of balls
{B(x,r)}zecp, forms a covering of the set Fy, so applying the 5r-covering
lemma there is a sequence of pairwise disjoint balls B(x;,7r,), i = 1,2,...
such that E; C | J;2, B(x;, 5ry,;) and hence

n 5n
Bl <5 ZrB \<Z/ <[

The proof is complete.

(b) Let f € LP(R™). Since ||[Mf|loc < ||f|lcc We can assume that 1 < p < oo.
Let f = f1 + f2, where

J1 = Ixqy>t/2) T2 = Ixqri<e/2

be a decomposition of f into its lower and upper parts. It is easy to check
that f; € LY(R"). Since |f| < |f1| + t/2 we have Mf < Mf; +t/2 and
hence

{Mf >ty Cc{Mf1 >t/2}.
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Thus

n

(1.6) | Et|

{Mf >t} <

| @l
2-5™
= dx .
t /{f|>t/2}|f($)| ’

Cavalieri’s principle gives

/ Mf@Pde = p /Oot”‘ll{/\/lf>t}|dt
Rn 0

p/ P (25/ |f(x) d:):) dt
0 A%
2/f()]
- 2-5"p/ \f(x)/ 772 4t da
R™ 0

P
— 21?.5”/ f:Epde

IN

and the results follows. O

Note that we proved in (1.6) the following inequality

/ (@) de
{1f1>t/2}

which is slightly stronger than (1.1). We will need that inequality later.

n

(1.7) Hz : Mf(x) >t} <

For a positive measure p on R"™ we define the maximal function by

p(B(z,7))
Mup(x) = sup ————=- .
1) =R B, )
A minor modification of the proof of Theorem 1.1(a) leads to the following
result.

Proposition 1.10. If i is a finite positive Borel measure on R™, then

n

Hz: Mu(x) >t} < %M(R”) for allt > 0.

Let F be the family of all rectangular boxes in R™ that contain the origin
and have sides parallel to the coordinate axes. With the family we can
associate the maximal function

Mf(@) = sup ]é e —y)ldy.

Note that the family F is not regular at 0 and hence the boundedness of
Mgz in LP; 1 < p < oo cannot be concluded from (1.5). However, we have
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Theorem 1.11 (Zygmund). For 1 < p < oo there is a constant C =
C(n,p) > 0 such that

(1.8) IM£llp < ClIfllp-

Moreover, if f € LY , 1 < p < oo, then

loc’

(1.9) lim ][f r—y)dy = f(z) a.e.

Proof. First we will prove how to conclude (1.9) from (1.8). Note that since
the family is not regular at 0, (1.9) is not a consequence of Theorem 1.6, see
also Theorem 1.12. However

0< hmbup][f x—y)dy — llmlnf][f(q:y)dySZMf(q:)

diam S—0 diam S—
SeF

and hence (1.9) follows from (1.8) by almost the same argument that was
used to deduce the Lebesgue differentiation theorem from Theorem 1.1. We
leave details to the reader. We are left with the proof of (1.8). For simplicity
assume that n = 2. We have

__ z2+bo $1+b1

Mira) = s £ )] dyrdoe
ay blio To—ao r1—al
ag,bo

T2+bo x1+b1
< SUP][ Supj[ |f(y1,92) dyr | dya .
a2,b0>0J zo—as a1,b1>0J21—aq

On the right hand side we have iteration of one dimensional maximal func-
tions. First we apply the maximal function to variable y; and evaluate it at
x1 and then we apply the maximal function to the variable yo and evaluate
it at x9. These are not exactly the Hardy-Littlewood maximal functions,
because we take averages over all intervals that contain x; and then all
the intervals that contain zs, but these maximal functions are bounded by
a constant multiplicity of the one dimensional Hardy-Littlewood maximal
functions, see (1.5), because the family of all intervals that contain 0 is reg-
ular at 0. Thus it is easy to see that inequality (1.8) follows from the one
dimensional version of Theorem 1.1 applied twice and the Fubini theorem.
O

Surprisingly (1.9) does not hold for p = 1 and hence the maximal function

M f does not satisfy the weak type estimate (1.1).} Namely one can prove
the following result that we leave without a proof.

Theorem 1.12 (Saks). Let F be the family of all rectangular bozes in R™
that contain the origin and have sides parallel to the coordinate axes. Then

ISuch estimate would imply (1.9).
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the set of functions f € L*(R™) such that

limsup][ flx—y)dy=o00 forallxz e R"
S

diam S—0
SeF

is a dense G subset of L'(R™). In particular it is not empty.

The proof is based on the category method.

1.1. The Calderon-Zygmund decomposition. The following result
plays a fundamental role in many areas of analysis.

Theorem 1.13 (Calderén-Zygmund decomposition). Suppose f € L'(R™),
f >0 and a > 0. Then there is an open set ) and a closed set F' such that

(a) R*"=QUF, QNF =0;

(b) f <« a.e. in F;

(c) Q can be decomposed into cubes Q = |Ji—; Qx with pairwise disjoint
interiors such that

a < f<2%, k=1,2,3,...
Qk

Proof. Decompose R" into a grid of identical cubes, large enough to have

éf(x)d:cga

for each cube in the grid. Take a cube @ from the grid and divide it into 2"
identical cubes. Let Q' be one of the cubes from this partition. We have two
cases:
(x)dzr > « or (z)dx < a.
Q Q'
If the fist case holds we include the open cube @’ to the family {Q}. Note

that
a<7[ f=2“|Q|—1/ f§2”7[ f <9
Q' Q’ Q

so the condition (c) is satisfied. If the second case holds we divide @’ into
2™ identical cubes and proceed as above. We continue this process infinitely
many times or until it is terminated. We apply it to all the cubes of the
original grid. Let Q = (J,; Q, where the cubes are defined by the first
case of the process. It remains to prove that f < « a.e. in the set R™ \ Q.
The set F' consists of faces of the cubes (this set has measure zero) and
points z such that there is a sequence of cubes Q; with the property that
z € Q;, diam Q; — 0, UCQif < a. According to Theorem 1.6 for a.e. such x

f@if — f(x) and hence f < « a.e. in F. O
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Corollary 1.14. Let f, o and Q) be as in Theorem 1.13. Then
Q< a7 fls-

Proof. We have

SIS Sy MPE T
k=1 k=1 Qk

The proof is complete. o

We already observed that if f € L'(R"), then Mf & L*(R"), however we
showed that the function cannot be globally integrable. It turns out that, in
general, the maximal function need not be even locally integrable. We will
actually characterize all functions such that the maximal function is locally
integrable.

DEFINITION. We say that a measurable function f belongs to the Zygmund
space Llog L if | f|log(e + | f|) € L .

It is easy to see that for a space with finite measure we have

(IP c LlogL C L',
p>1

so the Zygmund space is an intermediate space between all LP for p > 1 and
L'

Theorem 1.15 (Stein). Suppose that a measurable function f is supported
in a ball B. Then Mf € LY(B) if and only if f € Llog L(B).

Proof. Suppose that f € Llog L(B). Then

/Mf(a:)dm < yB|+/ M (z) dz
B {Mf>1}

Bl + {Mf > 1}\+/ {Mf >t} dx.
<|B| '

The last equality is a consequence of the Cavalieri principle. Applying in-
equality (1.7) we have

~ (¢
/BMf(:c)dx < 2|B|+/1 (t /{f|>t/2}|f(x)|da:> dt

max{2|f (@)1} g
25+ [ | [ D) 17 e
B 1

s2w+éuwmw+wumm<w

This proves the implication from right to left.
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To prove the implication from left to right we will show first an inequality
which is, in some sense, an inverse inequality to (1.7). Namely we will prove
that there is a constant C' = C'(n) > 0 such that

(1.10) {z: Mf(2) > Ct}| > ? f(2)] dx .
{151

To this end we need to apply the Calderén-Zygmund decomposition to the
function |f| and o = t. If Q = |J,, Qi is the Calderén-Zygmund decomposi-
tion, then

t<][ ] < 2nt
k

and hence M f(z) > Ct for all x € Q. Thus
(3] 9—n
o Mf@) > o)l = Y il = 2 | £(@)]da
k=1

Since |f| <t for = & 2 we have

x)| dx > x)| dx .
/Qlf( ) _/{|f|>t}|f( )

The last two inequalities combined together prove (1.10). Note that the
inequality (1.10) is satisfied by an arbitrary function f € L'(R™). Suppose
now that f vanished outside a ball B and that Mf € L'(B). Observe
that it is not clear if in the inequality (1.10) we can replace the set {z :
R™ : M f(z) > Ct} on the left hand side by the set {x € B : Mf(z) >
C't}|. Indeed, the maximal function does not vanish outside B and the proof
involved estimates on R™.

Note that Mf € Ll _(R"). Indeed, it is integrable in B and locally
bounded outside the closed ball B, so we need to verify integrability of
M f in a neighborhood of the boundary of B, but it is easy to see that if x is
near the boundary and outside the ball, we can estimate the value of M f(z)
by (constant times) the value of the maximal function in a point being the
reflection of x across the boundary. Thus the integrability of M f near the
boundary follows from the integrability of M f in B. Note also that the set
{Mf > 1} is bounded, because M f(x) decays to zero as x — oo. Thus
local integrability of M f and boundedness of the set {Mf > 1} implies
that the function M f in integrable in {Mf > 1}. With these remarks we
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can complete the proof as follows.

0o > / Mf(z)dx
{Mr>1}

> /1 {Mf > t}] dt

> [T ) dede
1t Jyssyey

max{C|f(@)|.1} g
crd/ / M) | (@) da
B \J1 t

- <72"t[;!f(wﬂlog@naX{Cﬂf(xﬂv1})dm'

The proof is complete. O

Y

A more careful analysis leads to the following version of Stein’s theorem.
In an open set {2 C R™ we define the local maximal function by

AMfsz£VMx€Qcﬁh

where the supremum is taken over all cubes () in {2 that contain z.

Theorem 1.16 (Stein). Let Q@ C R™ be a cube. Then Mqf € L*(Q) if and
only if f € Llog L(Q). Moreover

—(n+1) |f|> n+2
5 4MWsémmG+sz2 AM”’

fmzﬁu«

1.2. Fractional integration theorem. As an application of the Hardy-
Littlewood-Wiener theorem we will prove a result due to Hardy-Littlewood-
Sobolev about integrability of Riesz potentials, called fractional integration
theorem.

where

For 0 < a < n and n > 2 we define the Riesz potentials by

_ 1 fy)
Ua)0) = 5357 fo T g

where
rh2eT (5)
I ("5%)
At this moment the particular value of the constant v(«) is not important
to us. We could even replace this constant by 1.

Y(a) =
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Theorem 1.17 (Hardy-Littlewood-Sobolev). Let a > 0, 1 < p < 0o and
ap < n. Then there is a constant C = C(n,p, ) such that

Hafllp= < Cllfllp  for all f € LP(R™),
where p* = np/(n — ap).

We precede the proof with a technical lemma.

Lemma 1.18. If0 < a < n, and § > 0, then there is a constant C = C(n, «)
such that

/ YOI C6*Mf(z) for all z € R™.

B(z,s) T —y["

Proof. For x € R™ and § > 0 consider the annuli

) 1)
We have

e,
/B(x,é) |z —y[" dy Z/ \x — \" a
S (=) [, vl

k=0

) 5 )O‘_n < ; )nf
S = fy)ldy
— <2k+1 2k B(x,5/2k) ’ ( )’

wn (;)an (i 2,;) M),

k=0

IN

IA
€
3

IN

The proof is complete. O

Proof of Theorem 1.17. Fix § > 0. Holder’s inequality and integration in
polar coordinates yield

1£)] T
[ gy < ([
RP\B(z,5) 1T — Y R™\B(z,6) [T — Y|

) 1/p'
— HfHP <nwn/ Sn—l—(n—a)p/ d8>
é

= Cln,p, )3 | £,

because nw, equals the (n — 1)-dimensional measure of the unit sphere S !
and n — (n — a)p’ < 0. Thus the lemma gives

1 f ()] < C (6°M () + 522 1],
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Taking
5 (Mf(x))p/”

we obtain
1—2p

Laf(z)] < CMF@)" I f Il
which is equivalent to
Laf @) < CMF@PIflE

Integrating both sides over R™ and applying boundedness of the maximal
function in LP yields the result. O

2. FOURIER TRANSFORM

2.1. Measures and convolution.

Theorem 2.1 (Minkowski’s integral inequality). If p and v are o-finite
measures on X and Y respectively and if F' : X XY — R is measurable,
then for 1 < p < oo we have

(/Y </X |[F (2, )] du(w)>p dV(y)>1/p < /X <[/ |F(z,y)[? dy(y)>1/p dy(z) .

Proof.

</Y </x [E e y) du(x)>p du(y>)l/p

= s [0 ([ PGl ) a)

llrllg=1

T /X ( /Y h<y>\F<x7y>|dv<y>> dpa(x)

[[hllg=1

s [ ([ mwraw)” ([ reoraw)” e

[I1Rllg=1 —
1

- [(/ \F(m,mrpdu(y))”p du()

The proof is complete. O

IN

Exercise. Show that the classical Minkowski inequality ||f + g/, < || fll, +
llgllp follows from the integral Minkowski inequality.
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Recall that the convolution of measurable functions on R" is defined by
(f*g)(x) = Rlﬂx—yhﬂwdy-
Theorem 2.2. If1 < p < oo, then

1F* gllp < 1 fllpllglls-

Proof. The inequality can be obtained from the Minkowski integral in-
equality as follows

1559l = ([

1 =)oty dy dr) "

R

< ([ ([ 1re-vpwli) @)
an dv
< [ ([ 1re-vra) " gwla
S
The proof is complete. o

The above result is a special case of a more general inequality.

Theorem 2.3 (Young’s inequality). If 1 < p,q,7 < 0o and ¢! = p~1 +
r~t—1, then
1+ gllq < 1 1pllgll-

Exercise. Prove it.

Recall that Cp(R"™) is the space of continuous functions vanishing at in-
finity, i.e. f € Co(R™) if f is continuous and

lim f(z)=0.
|z|—o00
Co(R™) is a Banach space with respect to the supremum norm || - ||

and C§°(R™) (compactly supported smooth functions) is a dense subset of
Co(R™).

If p is a signed (Borel) measure on R™, then there is a unique Hahn
decomposition
p=pt—p,
where p+ and p~ are positive Borel measures concentrated on disjoint sets.
We define the measure |u| as

ul = p* 4
The number ||p|| = |u|(R™) us called total variation of p. The measures of

finite total variation form Banach space with the norm ||u||. We denote it
by B(R™).
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If f € LY(R"), then du = f(x)dz is a measure of finite total variation

WE) = [ fz)dz, |ul(E) = [p|fldz, |ull = [ fll1. Thus L'(R") can be
identified as a closed subspace of B(R™) by the isometry

LYR™) > f — f(z)dz € BR").

Theorem 2.4 (Riesz representation theorem). The dual space to Co(R™) is
isometrically isomorphic to the space of measures of finite total variation.
More precisely, if ® € (Co(R™))*, then there is a unique measure p of finite
total variation such that

o(f) = Rnfd,u for f € Co(R™).

Moreover ||| = [[ull = |p|(R™).

If f,g € LYR"), then f xg € L'Y(R") C B(R") and hence it acts as a
functional on Cy(R™) by the formula

o) = [ wafra@de= [ ([ @) dy) do

— /Rn (/ h(z)f(x —y) dar) 9(y) dy

on
= /n h(z +y)f(x)g(y) dz dy .

n

This suggests how to define convolution of measures.

If p1, po € B(R™), then

o) = [ [ bl y) dis (o)

defines a functional on Cy(R™) and hence there is a unique measure p €
B(R™) such that

/ ) / B+ ) dyn () dpa(y) = /R he) du(x) for all b € Co(R?).

We denote
[L= fu % fiz
and call it convolution of measures. Clearly
pa ok pg = o paand [l s paf] < flpa ] flpell
If duy = fdx, dus = gdx, then

pa * p2 = (f * g) du,
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so the convolution of measures extends the notion of convolution of func-
tions. If duy = f dz and p € B(R™), then

[ [ et wdn@dt) = [ [ b dedut)
— [ [ n@)fe -y dednty
= /n h(z) ( o fl@—y) du(y)> dx.

Thus p1 * p can be identified with a function

v | flz —y)du(y) € L'(R™),

SO we can write

fru= | fa-v)duw). 1f >l <1l

Theorem 2.5. If 1 <p < oo, f € LP(R™) and pu € B(R™), then
1 wllp < A fllp el

Proof is almost the same as that for Theorem 2.2 as we leave it to the
reader.

Exercise. Find 6, * 0.

2.2. Fourier transform. For f € L'(R") we define the Fourier transform
as

fe)= | fetan

Rn
where

X - f = Z.I‘jfj .
j=1
If 4 € B(R™) then we define

(e = [ d(a),
For f € LP(R™) and h € R™ we define
™f(x) = f(z +h).
We will frequently use the following well known result.

Lemma 2.6. For1 <p < oo
1f = 7ufllp =0 as|h[— 0.

Theorem 2.7. The Fourier transform has the following properties
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(a)
N LYR™) — Co(R™)
1s a bounded linear operator with
£ lloo < [1£1]1-
(b)

(f*9) =fg forf.ge€L'(R").
(¢) If f.g € L*(R™), then fg, f§ € L*(R") and
f@g(z)de= | f(x)§(x)da
R» R»
(d)
(mnf) (€) = f(&)e>™ Mt

(f(2)e>™ M) (&) = f(§ = h).
(e) If fo(x) = e " f(x/e), then

(F)(©) = (=€), (f(ex))(€) = ()e(©).-
(f) If p € O(n) is an orthogonal transformation, then

(f(p)) (&) = F(pe).

Proof. (a) Clearly " : L'(R") — L°(R") is a bounded linear mapping
with || flleo < || f]l1. Indeed,

©1< [ || do = | i1,
The dominate convergence theorem implies that the function f is continuous.

It remains to prove that f(f) — 0 as [£] = oo. Let £ # 0. Since €™ = —1 we
have

fe = f( Je 2Tl dy = — f(:v)e_Qm'fe”i dzx
_ S
= o f(x)exp 2m< W> -{) dx
— 727riz-£
/R o+ ggg) T o

fo=3 [ (r@-1(e+ 2,’*;2)) e~ g

Hence

and thus

fel<s]r-rc 1], 20 asle- .
2112
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(v
e © = [ ([ se-natdy) =i
- / )fZ‘m(xfy)-éd@ gly)e=2mE gy
n Rn
~ F©3(9).

(c) f g, fg € L', because the functions f , g are bounded and the equality of
the integrals easily follows from the Fubini theorem.

(d)
(mnf)(§) = A fla+h)e ™ da
_ f(x)e—%ri(x—h)f dz
R
— 627rih-§ f(l_)ef%ri:v{ dr .
R’!L
f©
The second equality follows from a similar argument.
(e)
~ _ -n f —2mix-€
) = [ em(E) e
= [ sy
= | flye & ay
Rn
= [f(e§).
The second formula follows from the first one if we replace € by e~
(f)
U ©) = | Flpw)e ™ da

_ f( )e —2mi(p~ y)fdy

= f(pg).

Equality (p~ty)-& =y - (p€) follows from the fact that the mapping = + px
is an isometry. O
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Theorem 2.8. Suppose f € L'(R") and x1f(x) € L'(R™), where x}, is the
k-th coordinate function. Then f is differentiable with respect to & and

_of

(~2mizyf (@) = ¢

(&)

Proof. Let ep be the unit vector along the k-th coordinate. Then the
second part of Theorem 2.7(d) gives

F en) — £ e—2mi(her)x _ A
flex ol f@:( ) 1f<x>> () - (~2miay () (6).

The convergence follows from the continuity of the Fourier transform in L!.
g

DEFINITION. We say that f is differentiable in the LP norm with respect to
xy if f € LP(R™) and there is g € LP(R™) such that

flx+ heg) — f(x
[ [ferre=se)
The function g is called the partial derivative of f (with respect to xy) in
the LP norm. We denote it by g = 0f/0xy.
Theorem 2.9. If f € L'(R") and df /0wy, is the partial derivative of f in

the L' norm, then
af \" A
<a:j;) — 2mig f(€)

P
dr —0 ash—0.

Proof. The first part of Theorem 2.7(d) gives

of AN 2milher) € _q ([ 0f  f(x+he)— f(x) "
(52) ~Fo"—— = (5= - P)

as h — 0, so

—0

A ~ 2mi(heg)-€ _ ~
(af) (€)= lim f(©) =L o o).

ox k h—0 h

The proof is complete. O

With each polynomial

of variables x1,...,x, we associate a differential operator

Hlal
P(D)= ) auD*= ) Qo gra g

|a|<m la|<m 1
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Then under suitable assumptions Theorems 2.8 and 2.9 have the following
higher order generalizations

(21)  P(D)f(&) = (P(=2mix) f(2)) (&), (P(D)f)(€) = P(2mi€)f(€).

2.3. Summability methods. An important problem is a search for the
inversion formula. Namely, given the Fourier transform f, how can we find
a formula for f7 We would like to prove that

@)= | f©emds.

As we will see later the formula is true under very restrictive assumptions,
but not always. Indeed, in general the right hand side makes no sense as the
Fourier transform of an integrable function is not necessarily integrable. To
handle this problem we have to use so called summability methods.

The two most important summability methods are the Abel and the Gauss
(Gauss-Weierstrass) methods.

For each € > 0 the Abel mean of a function f is
A= | f)ede.
R
If f is integrable, then
mA(f)= [ fa)de.

However the integral A.(f) exists also for non integrable functions. For ex-
ample it exists if f is bounded. If the limit lim. 0 A-(f) = ¢ exists and is
finite we say that [, f is Abel summable to L.

Exercise. Prove that if lim, o0 [y f(2)dx = £, then Ac = [° f(z)e =" dx
converges to £.

The Gauss mean of f is

Go(f) = | fla)e ol qa.
Rn

We say that [, f(z)dz is Gauss summable to £ if lim._o G<(f) = L.

The two methods can be put is a more general framework. If ® € Cyp(R")
and ®(0) = 1, then we define the ®-mean by

M. s(f) = Ma(f) = o f(z)®(ex) dx .

If lim._,o M.(f) = ¢, then we say that [p, [ is ®-summable to L.
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Our aim is to apply the summability methods to reconstruct f from f .
More precisely we want to investigate functions ® such that ®-means

| J©eTr () de
converge in a certain sense to f(z).
Let f,® € L'(R") and ¢ = ®. Fix t € R” and define
g(x) = ¥ P(ex) € LY (R™).
Then Theorem 2.7(d,e) gives
§(8) = (D)€ =) = we(€ —1).
Hence Theorem 2.7(c) implies

f(z)e?™ @t ® (ex) da = f(z)p:(x —t)dx.
Rn R

Replacing = by £ in the left integral and x by y in the right integral and
finally replacing ¢t by x we have

Theorem 2.10. If f,® € LY(R") and ¢ = ®, then

| J@emieEgde= | JW)eely —a)dy.

To see that the right hand side converges in a certain sense to f(x) and
e — 0 for a reasonable class of functions ¢ we need the next result.

Theorem 2.11. Suppose ¢ € L'(R") with [, ¢(z)dx = 1. If f € LP(R™),
1<p<ooorfeCy(R"), p=oo, then

| f*oe—fllp =0 ase—0.

Proof. By a change of variables f]Rn w. = 1. Hence

(F 9)@) ~ @) = [ (Fo =) = F@))oclu) dy.

Therefore the Minkowski integral inequality yields

o=t = ([ | [ G- s@)etaf )"
[ ([ 1re=0 - s@pa) " e iet/oldy

= [ ([ e =en) - s@P as) "oty
(22) = [ wCelewldy

IN
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where
o) = ([ 1+ - sapas)”.

Clearly w(h) < 2|/ f||, and w(h) — 0 as h — 0 by Lemma 2.6, so the right
hand side of (2.2) converges to 0 by the Lebesgue dominated convergence
theorem. The case f € Cy(R™) with p = oo follows from a similar argument.
g

Corollary 2.12. Suppose ¢ € L'(R") and [p. (x)dz = 0. Then ||f *
ellp = 0 as € — 0 whenever f € Lp(R ), 1 <p < oo or f € Co(R™),
p = 00.

Proof. Note that

(f *0e)(@) = (f * 2)(@) — f() -0 = / (F(x— ) — F(2)) e () dy

n

and the rest follows by the same argument as in the proof of Theorem 2.11.
O

Now we can prove a general result about the inversion formula in terms
of the summability methods.
Theorem 2.13. If ® € LY(R") and 90 =& € LY(R"), [pnolz)dr =1,
then the ®-means of the integral f]R" £)e? < d¢ converge to f( ) in the
L' norm, i.e. if

Me(w) = [ F(©)™€ @(ee) d

then
M. — f in L'(R").

Proof. It is a direct consequence of Theorem 2.10 and Theorem 2.11. O

The existence of functions ® satisfying the assumptions of Theorem 2.13
follows from the next result. Note that the result also shows a function which
is a fixed point of the Fourier transform.

Theorem 2.14. Let f(x) = e t2® ¢ > 0. Then

(a) Wiz, t) := f(z) = (dt) "/ 2|2/ (4),
(b) The function W has the following scaling property with respect to t:

© if p(x) = W(z,1), then W(z,t) = @/2(z).

W(z,t)de =1 for allt > 0.
RTL

In particular, if f(z) = e~ then f(x) L function f is a
fixed point of the Fourier transform.
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Proof. (a) By a simple change of variables it suffices to prove the formula

7TCC2

for the Fourier transform for ¢ = (47)~!. If u(x) = e~™" is a function of one

variable, then

' = —2mzu, U = —i(—2mizu)

and hence
()" = —i(=2mizu(x))" ().

Applying Theorems 2.8 and 2.9 yields

2miga(s) = —i(a)'(¢)

(@)'(€) = —2m&u(§).
Solving this differential equation gives

a(€) = 4(0)e ™.

Since

4(0) = / e ™ dy = 1

—0o0

we obtain (&) = e ™. If f(z) = e~™=" is a function of several variables,
then

n 00
f(f) _ / 677r|x\26727rix-§ do = H/ 6*7@%6*2mzk§k dzy,
" k=1" "%
n

= H a(&r) = ﬁ e ™ = ¢RI
k=1

k=1

(b) is obvious.
(c) It follows from the scaling property (b) that

W(x,t)de = W(z, (47)" Y dx = / e ™ dy =1,
R”L Rn n

The proof is complete. O

The function W(x,t) is called the Gauss-Weierstrass kernel. One can
show that the function

wet)= [ Wa—p0fwdy= s [ e way

is the solution to the heat equation in the half-space

%—Z’ =Aw  on R
w(z,0) = f(x), xeR”

under suitable assumptions about f.

The function ®(z) = e 47" t1#1* clearly satisfies the assumptions of Theo-
rem 2.13. Hence we have
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Theorem 2.15 (The Gauss-Weierstrass summability method). If f €
LY(R™), then

£ mix-£  —4n2t|€|?
| J@emete i ds = | J)W (e —y.t)dy = f
in LY(R™) as t — 0F.

Proof. The formula follows from Theorem 2.10 with € = 1 and the fact that
W(y —x,t) = W(x —y,t). The convergence to f follows from Theorem 2.11
and Theorem 2.14(b,c). O

Corollary 2.16. If both f andf are integrable?, then

(2.3) f@= ] F(©e e dg  a.e.

Proof. My(z) = [gn f(y)W (z — y,t) dy converges to f in L' as t — 07.
Hence M;, — f a.e. for some sequence t; — 0. On the other hand integra-
bility of f and the Lebesgue dominated convergence theorem yield

My(z) = [ f)e*mimse 0P ge — [ f(e)e* ™S de ast— 0F
R R
for all x € R™. O

Corollary 2.17. If f1, fo € LY(R") and fi=fo on R, then fi = fo a.e.
Proof. Let f = fi — fo. Then f = 0 and hence the function M. from

Theorem 2.13 equals zero. Since M. converges to f we conclude that f =0
a.e. U

The following result provides another example of a function that satisfies
the assumptions of Theorem 2.13.

Theorem 2.18. Let f(z) = e 2™1#It ¢ > 0. Then

(a)

A t
P(I’,t) = f(.f) = Cp, <t2 T |$’2)(n+1)/27
where el
N )
nT )2

(b) The function P has the following scaling property with respect to t:
if (p(l‘) = P(CE, 1)> then P(CE,t) = @t('r)
(c)
/ P(x,t)dx =1 for allt> 0.

2The assumption about integrability of f is very strong. Indeed, the equality (2.3)
implies that f equals a.e. to a function in Co(R™).
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The function P(x,t) is called the Poisson kernel. Later we will prove that
the function

u(z,t) = /]R Pz —y,t)f(y)dy
is a solution to the Dirichlet problem in the half-space

A(m’t)u =0 on R1+1,
u(@,0) = f(z), zeR"

under suitable assumptions about f.

By the same arguments as before we obtain.

Theorem 2.19 (The Abel summability method). If f € L*(R"), then

f&ermimte 2l qe = [ f(y)P(x —y,t)dy — f
R™ R™

in LY(R™) ast — 0.

The proof of Theorem 2.18 is substantially more difficult than that of
Theorem 2.14. Since the formula for the Fourier transform involves the I'
function we need to recall its basic properties.

DEFINITION. For 0 < & < 0o we define
o0
I'(z) = / t* et dt
0
Theorem 2.20.
(a) T(x+1) = 2T (z) for all 0 < x < co.

a) I'
(b) T(n+1)=n! for alln=0,1,2,3,...
() T(1/2) = V.

Proof. (a) follows from the integration by parts. Since I'(1) = 1, (b) follows
from (a) by induction. The substitution ¢ = s? gives

o0 (o0} 2 oo 2
I'(x) :/ t*~lemt dt :/ 2@ D=5 95 gg = 2/ 2t~ 1e=5" g
0 0 0

and hence
1 o
F<>: / e_Sst:\/TT.
2 0

Lemma 2.21.

/2 (Ll
/ sin”@dﬁzM form=1,2,3,...
0 nl’
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Proof. Denote the left hand side by a,, and the right hand side by b,,. Easy
one time integration by parts shows that

n+1
= 1 — =
ant2 = (n+1)(an — ant2), any2 nt2 a
Also elementary properties of the I' function show that
n+1

bpio = b

n+2 n+2 n
and now it is enough to observe that a1 =1 =0; = 1, ag = 7/4 = bs. O

Lemma 2.22.

(a) The volume of the unit ball in R™ equals
27rn/2 7.rn/2
nl(n/2) T (2+1)°

(b) The (n—1)-dimensional measure of the unit sphere in R™ equals nwy,

e

—

(2.4) Wy, =

Proof.

\9

B (o)

It follows from the picture and the Fubini theorem that the volume of the
upper half of the ball equals

1 ! n—1
—wp = [ wpor(h)" " dh.
2 0

The substitution
h=1-cosf, dh=sinfdf, r(h)=sind

and Lemma 2.21 give

/2 1/2p (n+l
lwn = Wp_1 / sin” 6 df = wy,_1 w ’
2 0 T'LF ( )

N[

SO

Wp = Wn—1 -

2r1/2D (241)
)
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If

27.rn/2

nl' (3)

then a direct computation shows that a; = 2 = wy and that a,, satisfies the

same recurrence relationship as wy,, so w, = a, for all n. The second equality
n (2.4) follows from Theorem 2.20(a).

Ay —

(b) follows from the fact that the (n — 1)-dimensional measure of a sphere
of radius r equals to the derivative with respect to r of the volume of an
n-dimensional ball of radius 7. O

We will also need the following result.

Lemma 2.23. For 8 > 0 we have

e~ B2 () gy,
A
Applying the theory of residues to the function e*## /(14 22) one can easily
prove that
2 [o.¢]
e F=2 / cospr pz dx .
™ Jo 1 + ZUQ

We also need an obvious identity

1 o 7(1+a:2)u
522 = ; e du .

2 (o]
B _ / cos,Bxdx
mJo 1+ 22

2 [o.¢] o0

= / cosﬁm(/ e ue T du) dx
T Jo 0
2 o0 o0

= / e‘“(/ e Uz cosﬁ:vc&) du
T Jo 0
2 [ 1 [ .

= / e_“(/ e ue? gibz daz) du
v 0 2 — 00

2 o0 _ o0 _4 2 2 —92 6
= / e“(ﬂ/ e T e 7r”’dy)du
™ Jo —00

W(Bu)

_ % e—u(;\/j —ﬂ2/(4U)) du

= e B/ () gy
S

The proof is complete. O

We have
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Proof of Theorem 2.18. (a) By a change of variables formula it suffices to
prove the formula for ¢ = 1. We have

; 1 e 2),(2 ;
—27|x| 727rzx-£d _ / / —472|x|?/ (4u) d 727sz-£d
& (& T — —€ uje X
/ . an <\/7? 0 Ju )
1 e —4n?|z|?/(4u) ,—2miz-€
= — — d d
\/77/0 Vu (/R" ‘ ‘ 06) !

W&, (du) )
_ L /°°

VT Jo

o

() e

T

= /Oo Ul
T 0

— 1 1 Ooe_ss(”_l)/Q ds
(D2 (1 4 |€2) (D72 J, :

I[(n+1)/2]

(b) is obvious.

(c) Because of the scaling property (b) it suffices to consider ¢t = 1. We have

dx
/HP(x,l)d:r = o /Rn L 22
polar > do n—1
= . S d
c /0 (/Snl(o,l) (1 +r2)(n+1)/2) r r

00 ,rnfl
= cnnwn/o —(1+r2)("+1)/2 dr

tan g w/2

r=tan . —

= cnnwn/ sin" 19 do
0

L) e ()
= n
772" 0T (5) (- D (%50)
= 1.
The proof is complete. O
If f, f € L*(R™), then
(2.5) f@= | f©emmede  ae.

by Corollary 2.16. The integral on the right hand side defines a continuous®

function of z € R™ and hence if in addition f is continuous, (2.5) holds
everywhere. In particular we can apply the formula to

f(x) = e_47r21t|ﬂ?7|2 and f(x) _ 6—27rt|x\

3Co(R™).
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which gives us

Corollary 2.24.

/ W(f, t)eQﬂ'ixf df _ 6—4:71'2t|ct|2 7

/ P(f, t)627ri:r-£ d¢ = 6727r|:v\t
for all x € R™.
The Weierstrass and Poisson kernels have the following semigroup prop-
erty.
Corollary 2.25. Forti,t3 > 0 we have

W(SU - yvtl)W(y7t2) dy = W(SC, tl + t2) 3
Rn

[ Pe— )P dy = Plat +12)
for all x € R™. In other words, if Wi(z) = W (z,t) and Py(z) = P(z,t), then
(Way + Wiy )(2) = Wiyt (2)

(Pt1 * Pt2)(x) = B 41, (1‘)
for all x € R™.

Proof. Tt follows from Corollary 2.24 with = replaced by —z that
Wiz) = el By(z) = e72mlalt|
Hence Theorem 2.7(b) yields
(Wi, * Wi) () = Wy, (2)Wey (2) = Wiy 14, ()
(P # Py) (x) = Py (2) Py (2) = Pyt ()
and the result follows from Corollary 2.17. a

As we know, if f € LP(R™), 1 < p < oo and ¢ € L*(R"), [, ¢ =1, then
f*we — fin LP. In particular

(2.6) fyW(z—y,t)dy — f inLPast— 0F.
Rn

(2.7) fy)P(x—y,t)dy — f inLPast— 0F.
RTL

However, it is also interesting to investigate whether we have a.e. conver-
gence. As we shall see this is true.
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Theorem 2.26 (Lebesgue differentiation theorem). If f € Li (R"), then

loc

. = lim 1 _ = xz
lim fly)dy =1 ) /]3(x7r)f(y)dy f(z)

r—0 B(z,r) r—0 ‘B(l’,’r

for a.e. x € R".

We proved this result in Analysis 1.

Note that the Lebesgue differentiation theorem can be stated as follows:
if f e Ll (R"), then (f *p:)(x) = f(x) a.e., where ¢(z) = w; xp(o,1)- The

loc
integrals at (2.6) and (2.7) are also convolutions and hence it is an obvious
guess that the Lebesgue differentiation theorem should play central role in

the proof of pointwise convergence of these integrals.

As a consequence of Theorem 2.26 we have.

Corollary 2.27. If f € LL _(R"), then

loc
(28) tim L [f) ~ f) dy =0
r=9JB(z,r)

for a.e. x € R™.

Exercise. Prove the corollary.*

DEFINITION. Points x € R™ for which (2.8) is satisfied are called Lebesgue
points of f.

DEFINITION. Let ¢ € L'(R™). We say that VU is a radially decreasing magjo-
rant of o if

(a) ¥(z) = n(|z|) for some’ 7 : [0, 00) — [0, 00].
(b) n is decreasing.
(©) lp(@)] < ¥(z) ae.

Every ¢ € L'(R") has the least radially decreasing majorant. Indeed, if

1o(t) = esssup |o(y)|
ly|=t
then 7 is decreasing (although it may be equal to infinity on some interval)
and the function

Wo(z) = no(|z]) = e\SS;}lIlJ lo(y)l

“Hint: Consider fB(m . |f(y) — p| dy for all rational p.

5Functions of this form, i.e. functions constant on spheres S™~*(0,r) are called radially
symmetric.

6ic. nonincreasing.
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is the least radially decreasing majorant. Thus the existence of an integrable
radially decreasing majorant ¥ of ¢ is equivalent with the condition that
U, € L'

Theorem 2.28. Let ¢ € L'(R™) be such that [z, ¢ = a. Suppose that ¢
has an integrable radially decreasing majorant
V() = n(jz]) € L'(R").
If f € LP(R™), 1 < p < 0, then
(f xpe)(@) = af(x)

whenever x is a Lebesgue point of f. In particular the Gauss- Weierstrass
(2.6) and the Poisson (2.7) integrals converge to f a.e. ast — 0F.

Proof. We will prove the theorem under the additional assumption that 7
is absolutely continuous, but the result hods also without this assumption.

The integrability of ¥ gives a growth estimate for the function 7. Indeed,

n_

r

/T/2§|z|§r U(z)dx > n(r) (wnr" — Wp, (§>n) =wy, 2 5 y(r).

The left hand side converges to 0 as r — 0 or r — oo so does the right hand
side

(2.9) lim r"n(r) =0, lim r"n(r)=0

r—0 r—00

and hence the right hand side is bounded
r"n(r) < M for all r > 0 and some M > 0.

Fix a Lebesgue point z of f. Then for every ~ > 0 there is § > 0 such that

in |f(x —y) — f(z)|dy <~ provided r < 6.
™" JB(z,r)

Using polar coordinates we can rewrite this inequality as

1 [ .-

(L a0 f@)ldo(®) ) ds <.

™ Jo S7=1(0,1)

a(s)
ie.
(2.10) G(r) = / s"1g(s)ds < yr™ provided r < 4.
0

We have

(F*paa) =af@l=| [ (e =9 = F@)ecn
z—vy)— f(x)|¥(y)d z—1vy)— f(z)|¥(y)d
< /|y|<5\f( y) — F(@) [ We(y) dy + / @ —y) — f(@)|Tely) dy

ly|>6
= L+1I.
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We estimate I; as follows’

noo= [ e flan) et/
= [ as
- / & (s)n(s/e) d
— G ( "l/G /(s/2) d

G5 () (?)” N

—e " G(et)n'(t) dt
d/e
M — ’y/ "y (t) dt
0

0 0

INIA
o

IAIA

VM—V/ t"n (t) dt
0

o0
parts & (2.9) M + n’y/ "y (t) dt
0

polar

V(M +wy I ]l) -

The estimate for the integral I, is easier
B [ 1fe- ) dy+ 1@ [ o)y =+ T
ly|>6 ly|=6

Since
ws(y)dy—/ Y(y)dy -0 ase—0
ly|>d ly|>d/e

we have Ips — 0 as € — 0.

/ /v’
beo< ([ v ea)”

ly|>d

/ / !
= ([ el ) ay)

ly|>d

< W) ([ vema)”

ly|>6

(o (O o(2) (L, 0"

— 0 ase — 0

1t 7n is decreasing, but not absolutely continuous, then the integration by parts in the
estimates below is not allowed. To overcome this difficulty one has to use the Stielties
integral which allows to integrate by parts functions that are of bounded variation.
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by (2.9). Therefore for & < &g the sum I; + I is less than 2y(M + w,, 1{|2]1)
which proves the theorem. O

2.4. The Schwarz class and the Plancherel theorem. We say that
f belongs to the Schwarz class S(R") = S, if f € C°(R") and for all

multiindices «, 8

Sup 2D f ()| = pa,s(f) < oo.
reR™

That means all derivatives of f rapidly decrease to zero as |z| — oo, faster
than the inverse of any polynomial. Clearly C3°(R"™) C S,,, but also el ¢
Sn so there are functions in the class & that have non compact support.
{pa,s} is a countable family of norms in S,, and we can use it to define a
topology in S,,. We say that a sequence (fx) converges to f in S, if

li — )=
Jim Pas(fe—f)=0

for all multiindices «, . This convergence comes from a metric. Indeed,
dag(f,9) = papg(f — g) is a metric. If we arrange all these metrics in a
sequence df,dj, ..., then

22 k dk f7 )
1+ di(f.9)
is a metric in S, such that f, — f in S, if and only if f,, — f in the metric
d.
Recall that (73, f)(z) = f(h + x) for h € R™.
Proposition 2.29. The space S,, has the following properties.

Sn equipped with the metric d is a complete metric space.
C§e(R™) is dense in Sy,.

If p € S, then T — @ in S, as h — 0.

The mapping

(

(a
(b
X

)
)
)
)
Sp 3¢ a*DPp(x) €S,
18 continuous.
(e) If ¢ € Sy, then

o(x + heg) — p(x) Op
3 —>8xk(a:) as h — 0.
in the topology of Sy,.
(f) If o, € Sy, then @ x ¢ € S, and
D¥(p o) = (D%) % = o x (DY)

for any multiindex o.

Exercise. Prove the proposition.
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Theorem 2.30. The Fourier transform is a continuous, one-to-one map-
ping of S, onto S, such that

(a)
(SQZ) () = 2mit; f(©),
(b) A
_of

(~2mias (€)= 5 (©).

@)= | fEeemrtde.

Proof. We already proved (a), (b), first part of (c) and (d). The second
part of (c) easily follows from its first part. Now we will prove that the
Fourier transform is a continuous mapping from S,, into S,. Formulas (a)
and (b) imply that

D (&) = C(D* (" 1)) (€)
and hence
€*DPF©)] < CID* (" )]
Pap(f) < CID (" )]y

An application of the Leibnitz rule implies that D(2? f) equals a finite sum
of expressions of the form z% D% f. Since

oD%l = [ 10+ fay e D @)1+ ) da

< C(n) sup |(1+ [z*)"2™ DY f(x)] < o0
zeR?
it follows that f € &y. One can also easily deduce that the mapping
S, = S,
is continuous.
If f €S, than f € S, and hence both f and f are integrable, so (e)
follows from the inversion formula. This formula also shows that the Fourier

transform applied four times is an identity on S, and hence the Fourier
transform is a bijection on S,. O
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Theorem 2.31 (Plancherel). The Fourier transform is an L? isometry on
a dense subset S,, of L?

2= 1fll2 £ € Sns

and hence it uniquely extends to an isometry of L?

1Flz=11fll2s f € LAR™).
Moreover for f € L*(R™)

f() = lim f(a)e™mE da

R—o0 lz|<R

in the L? sense, i.e.

f—/ f(x)e2mies d:cH —0 asR— o0
|lz|<R 2

and similarly

f(z) = lim f(&)ermi= e ae
R—o0 |§|<R

in the L? sense.

Proof. Given f € S, let g = f, so § = f. Indeed,

§() = f(x)e*m'f dr = f<m>e2m~f dr = f(x).

Hence Theorem 2.30(d) gives

fle= [ 7= [ i [ Jo= | if=1fla.

Thus the Fourier transform is an L? isometry on S,. Since S, is a dense
subset of L? it uniquely extends to an isometry of L?. Now

L'> fxBo.r) LQ)f for f € L? as R — o0

and hence

(Fxstom) () = / f@)e e ar 2 fe)

|2|<R

as R — oo. Similarly
[ Feemetie 2 pa)
|€|<R

as R — oo. O

Proposition 2.32. If f,g € L>(R"), then

f@)g(@)de= | f()g(z)dz
R™ R™
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Proof. Approximate f and ¢ in L? by functions in S,, apply Theo-
rem 2.30(d) and pass to the limit. O

Consider the class L'(R") + L?(R") consisting of functions of the form
f=fi+f, fi €LY, fo € L?. Then we define

f = f 1+ f 2.
In order to show that the Fourier transform is well defined in the class
L' + L? we need to show that it does not depend on the particular choice of

the representation f = fi + fo. Indeed, if we also have f = g; + g2, g1 € L',
g2 € L?, then f; — g1 = go — fo € L' N L? and hence

fi—ip=(A-9) =(02—Ff) =g~ f
fitfo=i+0.
It is an easy exercise (Problem 8) to show that
LP(R™) ¢ LY(R™) + L*(R"), for 1 <p<2,
and hence the Fourier transform is well defined on LP(R™), 1 < p <2 and
“LP(R™) — L*(R™) + Co(R™), for 1 <p<2.
Later we will prove the Hausdorff-Young inequality which implies that

t IP(R™) — LP(R"), for1<p<2.

2.5. Tempered distributions.

DEFINITION. The space S}, of all continuous linear functionals on S, is called
the space of tempered distributions.

Here are examples:

1. If f € LP(R™), 1 < p < o0, then

Lite)= | f(@)p(x) da
defines a tempered distribution Ly € S},.

2. If i is a measure of finite total variation, then

Lu(p) = /Rn pdp

defines a tempered distribution L, € SJ,.

3. We say that a function f is a tempered LP function if f(z)(1 + |z|?)~% €
LP(R™) for some nonnegative integer k. If p = oo we call f a slowly increasing
function. Then

Li(p) = . f(@)p(x) dp
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defines a tempered distribution Ly € S) for all 1 < p < oo. Note that
slowly increasing functions are exactly measurable functions bounded by
polynomials.

4. A tempered measure is a Borel measure p such that

/ (14 |2[2)* du < oo
for some integer k > 0. As before L, € S},.

5.
L(p) = D%p(x0)
is a tempered distribution L € S),.

The distributions generated by a function or by a measure will often be
denoted by L¢(p) = flel, Lu(e) = ule].

Suppose that w € S),. If there is a tempered LP function f such that
u(p) = flyg] for ¢ € S,, then we can identify w with the function f and
simply write v = f. The identification is possible, because the function f
is uniquely defined (up to a.e. equivalence). This follows from a well known
result.

Lemma 2.33. If Q C R" is open and f € L (Q) satisfies Jo fe =0 for
all p € C§°(2), then f =0 a.e.

Note that not every function f € C*°(R™) defines a tempered distribution,
because it may happen that form some ¢ € S, the function fy is not
integrable and hence the integral fl¢] = [p. f(z)p(z)dr does not make
sense.

Theorem 2.34. A linear functional on S, is a tempered distribution if and
only if there is a constant C > 0 and a positive integer m such that

IL@I<C Y paplp) forallp €S,

laf,|8]<m

Proof. If a linear functional L satisfies the given estimate, then clearly it
is continuous on S,,, so we are left with the proof of the converse implication.
Let L € 8),. We claim that there is a positive integer m such that |L(¢)| < 1
for all

1
Y E {@GSH: Z Pa,s(p) < E} = Np .
lal,[B]<m

Suppose not. Then there is a sequence ¢y € S,, such that |L(¢x)| > 1 and

(2.11) Y Pasler) <

lal,|B1<k

. k=1,2,3,...

| =
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Note that (2.11) implies that ¢ — 0 in Sy, so the inequality |L(¢x)| > 1
contradicts continuity of L. This proves the claim. Denote

lell=" > Pasle).
ol Bl<m

Observe that || - || is a norm. For an arbitrary 0 # ¢ € S,,, ¢ = ¢/(m]l¢||)
satisfies ||@|| < 1/m, so ¢ € N, and hence

IL()| = mllell[L(2)] < mlle]l
which proves the theorem. O

For any function g on R™ we define g(z) = g(—=z). Then it easily follows
from the Fubini theorem that for u, o, ¥ € S,

(2.12) | wep@i@de = [ @)@ )i do,
Note that

v [ o ves,
and

n— w(z)n(x)dr, nes,
R
are tempered distributions. We denote them by (u * ¢)[¢)] and u[n], so we
can rewrite (2.12) as

(u s @) Y] = ul@ =]
Note that if u € 8, and ¢ € Sy, then ¢ — u[p*1)] is a tempered distribution.

DEFINITION. If w € S, and ¢ € S, then the convolution of u and ¢ is a
tempered distribution defined by the formula

(u* @)[¢] := u[p* ).

The following result is left as an easy exercise.
Proposition 2.35. Ifu e S, o, €S, then
(uxp)xp=ux(pxy).
Theorem 2.36. If u € S|, and ¢ € S, then the convolution u * ¢ is the
function f whose value at x € R™ is
f(@) = u[ra@] = ulp(z —)].

Moreover f € C°(R™) and f and all its derivatives are slowly increasing.

Proof. First we will prove that the function f(z) = u[r_,@] is C*° and
f as well as all its derivatives are slowly increasing. It follows from Theo-
rem 2.29(b) that f is continuous. Observe that

pher — }3 —p(=) _ o~ helf;) —20 L _(0g)() = O ()
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in the topology of S,, by Theorem 2.29(d), so for every z € R™ we have
pa+her—)—pe—-) _ _ plher —-) —p(—)
= ’Tx
h h
= T2((Orp)(—)) = () (x — )

in the topology of &y,. Hence

flodhey @) _ [eethe ) @2 0) | g - ).

Thus

O f () = u[(Orp)(z — )]
is continuous by Theorem 2.29(b). Since Jxp € S,, the function on the
right hand side is of the same type as the one used to define f, so we can
differentiate it again. Iterating this process we obtain

(2.13) D° f(z) = ul(D*)(z —)].
This implies f € C*°(R™). Since u is a tempered distribution, Theorem 2.34
gives the estimate

(2.14) f@)] = [u[r—2@l| SC Y Paplr-2p) < C'(1+[a])™.
la],|Bl<m
Indeed,
Pap(T2@) = sup [2*(D°@)(z — )| = sup |(z + 2)*(D"3)(=)|
z€R™ z€R”

< CO(1+ Jz|lo) sup (1+ |21 1DPp(2)| < C'(1 + |z)™.
z n

Hence f is slowly increasing, and so it defines a tempered distribution. Since
the derivatives of f satisfy (2.13) which is an expression of the same type
as the one in the definition of f, we conclude that all derivatives D*f are
slowly increasing.

It remains to prove that

(2.15) (ux@)[Y] = flY] forall v € S,.
We have®

<uw>[¢]=u[¢w}:u[/ @(m—yw(y)dy] —0.

For each x we approximate the last integral by Riemann sums. The Riemann
sums as a function of x belong to S, and it is easy to see that they converge
to ¢ x 1 in the topology of S,,. Hence from the linearity and continuity of u
we have

n

9= [ gl —y)oly) dy = / ulr—y @i(y) dy = 1]

R™ R"
which completes the proof.

8Valentine’s day is soon.
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We used the phrase “easy to see”. This is what most of the textbooks
write as an explanation of the convergence of Riemann sums to ¢ * 1, but it
is actually not that easy. The arguments needed in the proof of this fact are
elementary, but quite technical and very unpleasant to write down. This is
why in the textbooks the authors try to escape from the problem by saying
“easy to see”. To make the exposition self-contained we will explain this step
with all details, but if we will need a similar argument in the future we will
just say “easy to see”.

First of all observe that is suffices to prove (2.15) under the assumption
that ¢, € C§°. Indeed, suppose we know (2.15) for compactly supported
functions, but now ¢,¢ € S,,. Let C§° 2 ¢, = ¢ in S, and C§° 3 ¢y — ¢
in S,,. Observe that it follows from the proof of (2.14) that all the functions
fr = u[r—,Pk] have a common estimate independent of k

[fe(@)] < O+ [x))™

and hence fr — fin S),. It is also clear from the definition of the convolution
that ux pp > u*¢@ in S, so

(ux @)[¢e] = lm (uxpp)[toe] = Um fu[the] = fltpe] .
Now letting ¢ — oo yields (2.15).

To approximate the integral f]R" n(y) dy, n € C5° by Riemann sums, we
fix a cube @ = [-N, N|" so large that suppn C @ and divide the cube into
cubes {Qg; }i¥ of sidelength 27%_ Denote the centers of these cubes by ;.
Clearly

my,
> 1Yk | Qril —>/R n(y)dy as k — oo,
i=1

and actually

my,
(2.16) Z/Q In(y) — n(yr:)| dy — 0 as k — oco.
i=1 ki
Suppose ¢, € C§°(R™), so ¢ * 1) € C§°(R™). Hence for every x € R"
mg
wy(x) = Z & — Yri)V (Yri) | Qri| — /]R oz —y)Y(y)dy as k — oc.
i=1 "

The functions wy(x) belong to S,,.2 We will prove that

wg(z) — - Plx —y)h(y)dy = (@ *¢)(z) ask — oo

in the topology of &,. First let us show that

sup |wg(z) — (@ x)(z)| -0 as k — oc.
z€R"

9As finite linear combinations of functions from Sn.
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We have

jwi () — (&% ¥) ()]

IN

Z [, 19t skt~ G o0l
|so||oo§j/ (1) — (9) | dy

+ Z/Qm B — i) — Bla — )| (V)] dy

= L+ 1.
I = 0 as k — oo by (2.16) and

IN

Iy <sup sup [p(z —yr) — Pz —y)| | [W(y)ldy =0 ask— oo,
i yEQk’L Rn

because ¢ is uniformly continuous. Since
my
= Dol — yra)dh(yea) | Quil
i=1

exactly the same argument as above shows that
sup |DPwy(z) — (DP@* ) ()| = 0 as k — oc.
e DB (@) (x)
and hence
Papg(wy —@x1P) -0 as k — oo,
because |z|* is bounded as the functions have compact support.

This proves that wy — @ * 1 in S,. Since the function f(z) = ul[r_, @] is
smooth, fi € C§° and hence

0l = [ ulet =)oy
fw)
= klglgoz wl@( = Y |9 (ki) | Qi
=1

= hmu[ZsO — Yki)V (Yri) | Qi

= lim ulwg] = u[p x].
k—o0
This time the proof is really complete. O
Note that formula (2.13) implies.

Theorem 2.37. Ifu € S), and ¢ € Sy, then for any multiindex o we have
D% (ux @) () = (ux (D%))(x).
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DEFINITION. The space S}, is equipped with the weak-x convergence, (called
also weak convergence) i.e. we say that ux, — u in S}, if

ugp(¥) = u(yp) for every ¥ € S,,.

The following result seems obvious, but the proof requires the use of the
Banach-Steinhaus theorem!® (Corollary 9.2 from Functional Analysis).

Theorem 2.38. If uy, — u is S|, and g — ¢ in Sy, then uk(pr) — u(p).

We leave details as an exercise.
This result together with Theorem 2.34 easily gives.

Theorem 2.39. If Ly, — L in S}, then there is a constant C > 0 and a
positive integer m such that

sup |Li(¢)| < © > pas(p) forallpeS,.

o), BI<m

Let u € S),. If ¢ € C§°(R"), [pn ¢ = 1, then for every o € S, pe x1p — 1)

in S, (Why?), so

(u* o) [P] = u(e * 1) — u(¥).
Since u. = u * . € C™ we obtain a sequence of smooth functions that
converge to u in S;,. If we take a cut-off function n € C§°(R"), 0 <n <1,
n(x) =1 for |z| <1 and n(x) = 0 for |z| > 2, then one can easily prove that
for ¢ € S,

n(x/k)Y(z) = ¢Y(z) inS, as k — oo.

Using this fact and Theorem 2.38 one can prove that

wi () = n(z/k)(u* pp-1) € CGg°
converges to u in S),. This gives

Theorem 2.40. C{°(R") is dense in S}, i.e. if u € S}, then there is a
sequence wy, € C3°(R™) such that

wi[Y] = u(y)  for € S,.
If p,9 € S, then the integration by parts gives

Dp(@)(a)dz = (—)° [ @) D() da.
R R™

For h € R™ we have

/ (mp)(@)y(x) do = / (@) (rnt) () de,

10A¢ least T do not know how to avoid the Banach-Steinhaus theorem.



44 PIOTR HAJLASZ

Moreover

| s@u@in = | @i,
/n o(x)Y(z) dr = / o(z)h(z) d .

If n € C*° is slowly increasing and all derivatives of 1 are slowly increasing,
i.e. every derivative D%n is bounded by a polynomial, then for v € S, n €
Sy, and the mapping ¢ — 11 is continuous in S,,. In particular x*(z) € S,,.
Moreover

| @@ iz = [ o@)(na)i@)ds.
RTL

R
This justifies the following definition.

DEFINITION. If u € &), then the distributional partial derivative D*u is a
tempered distribution defined by the formula

D[] = ul(-1)"* D).
The translation 7,u € S}, is defined by
(Thw)[$] = ulr_py)].

The reflection @ € S, is

afy] = uly].
The Fourier transform 4 € S}, is
a[y] = uly].

If n € C is slowly increasing and all derivatives of n are slowly increasing,
then we define

(nu)[¥] = ulny].
In particular

(@%u)[Y] = ulz®y].
The Fourier transform on S, is often denoted by Fu = .

The formulas preceding the definition show that on the subclass S,, C S},
the partial derivative, the translation, the reflection, the Fourier transform
and the multiplication by a function defined in the distributional sense co-
incide with those defined in the classical way.

If f € LY(R™) + L?(R"), in particular, if f € LP(R"), 1 < p < 2, then
the classical Fourier transform coincides with the distributional one. That
easily follows from Theorem 2.7(c) and Proposition 2.32.

The basic properties of the Fourier transform, distributional derivative
and convolution in S, are collected in the next result whose easy proof is
left to the reader.
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Theorem 2.41. The Fourier transform in a homeomorphism of S, onto
itself.1t Moreover for u € S, and ¢ € S, we have

(a) ()" =a,

(b) (ux @) = ¢a,

(¢c) D¥(u*¢) =D p=ux D%,
(d) (D%u)" = (2mix)*a

(e) ((—2miz)%u)" = Da.

Note that in the case (c¢), u* ¢ € S}, and D*(u * ¢) is understood in the
distributional sense. On the other hand u*y € C* and Theorem 2.37 shows
that the distributional derivative of u * ¢ coincides with the classical one.

Let us compare the notion of distributional derivative in ) with the
notion of weak derivative in Sobolev spaces.

DEFINITION. Let  C R™ be an open, u,v € L{. () and let a be a multiin-

loc

dex. We say that D*u = v in the weak sense if for every ¢ € C5°(Q)

/Qw: (1)'6*/(2@17%.

Lemma 2.33 implies that the weak derivative D%u, if exists, is uniquely
defined. If uw € C™(Q2), then for |a| < m the the integration by parts gives

/ DQUSO — (_1)|a\ / uDa(p for all (NS 080(9)7
Q Q

where D®u is the classical partial derivative, so in this case the weak deriv-
ative coincides with the classical one.

It is an easy exercise to prove that if f € L? is differentiable in LP and
g = O0f /0, is the partial derivative in the LP norm, then actually g is also
a weak partial derivative of f.

If u € S), and there is a tempered LP function g such that

Dufyp] = (—1)\ | g@p(@)dz forp € S,

then Lemma 2.33 shows that ¢ is uniquely defined and we can identify
D% = g.

DEFINITION. Let 1 < p < 0o, m a positive integer and {2 C R™ an open set.
The Sobolev space WP() is the set of functions v € LP(2) such that the
weak partial derivatives of order less than or equal to m exist and belong to
LP(Q). The space is equipped with the norm

llullm,p = Z [ D%ul|p.

laf<m

Hyyith respect to the weak convergence in S,,.
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It is an easy exercise to prove

Theorem 2.42. W™P(Q) is a Banach space.

To compare Sobolev spaces with tempered distributions note that ele-
ments of W P(R™) belong to S, and the distributional derivatives of orders
less than or equal m in the sense of S, coincide with the weak derivatives
in the sense used to define the Sobolev space.

Note also that if f € LP has partial derivatives D*f, |a|] < m in the
LP norm, then f € W™P and the LP derivatives coincide with the weak
derivatives.

Using the notion of distributional derivative we can provide a new class
of examples of a distributions in S),. If f,, || < m are slowly increasing
functions and a, € C for |a| < m, then

(2.17) u= Y anDLys,) €S,
ja|<m

Surprisingly, every distribution in S, can be represented in the form (2.17).
We will prove it now, but the proof will require some preparations.

First we will show how to solve, for each positive integer NV, the partial
differential equation

(2.18) (I—A)Nv=u,

where u € S, is a given tempered distribution. A direct application of (2.1)
shows that if ¢ € S, then

F((I = A)Y) () = (1 +4n*|e*)™ (Fy)(€)
and hence also
(2.19) FHI = 2)Y9)(€) = (1 + 472V (F 1))
Therefore the operator (I — A)Y can be represented as
(2.20) (I - AN = F (1 +4r%¢HNF)

Observe that the function (1 4 472£]2)~" and all its derivatives are slowly
increasing, so we can multiply tempered distributions by that function. For
u € 8], we define

v=F (1 +47|¢H) N (Fu) € S,
We claim that v solves (2.18). Indeed for ¢ € S,, we have
(1= A)Nofy] = u| F((1+4x2¢P) N F (1= A)Y9)] = uly]
by (2.19).
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In view of (2.20) it is natural to define
(2.21) (I-A)"N=F A +4r?) N F),
SO
v=(I-A) "Ny
is a solution to (2.18). The operator (I — A)~" is called a Bessel potential

and one can prove that it can be represented as an integral operator.'?

We proved that every distribution u € S, can be represented as
(2.22) u=(I-ANv,

where v = (I — A)™Nu € S/,. Now we will show that if N is sufficiently
large, then v is actually a slowly increasing locally Lipschitz function, so
(2.22) gives a representation of the form (2.17). We will also show that for
any positive integer k we can find N so large that v € C¥(R™).

Theorem 2.43. Suppose u € S), satisfies the estimate

@) <C Y pas(p).

o), B]1<m

If k is a nonnegative integer and N > (n + m + k)/2, then the tempered
distribution

v=(I-A)"Nu
has the following properties:

(a) If k=0, then v is a slowly increasing function.

(b) If k = 1, then v is a locally Lipschitz continuous slowly increasing
function.

(c) If k> 1, then v is a slowly increasing function of the class C*~1.

Proof. We will need

Lemma 2.44. If P(x) is a polynomial of degree p and N > (n+p)/2, then
all derivatives of

P(z)

0= Wy

belong to L' (R™).

Proof. Since 2N — p > n, f € L'(R"). We have

of  Q(x)
ox; (1 + |z|?)2N’

deg@Q =2N +p— 1.

121 ater we will carefully study Bessel potentials. We will find an explicit integral for-
mula for the Bessel potential and we will show how to characterize Sobolev spaces in terms
of Bessel potentials.



48 PIOTR HAJLASZ

The function on the right hand side is of the same form as f. Since
n+ (2N +p—1)
2

we conclude that df/0z; € L'. The integrability of higher order derivatives
follows by induction. O

2N >

We will prove that the distributional derivatives of v of orders |y| < k are
slowly increasing functions. We have

(—)PDY0[y] = w[F((1 + 47|z NFH(D7y))] .

Hence
|D7v[¢“ < C Z sup waDB(‘F((l+47T2‘$|2)_Nf_1(D7w))))
|0‘\»|B\§m’”€R"
= C Ca’ , sup f <Da ( fil w >>‘
|a|§<m 57x€Rn (14 4m2|z|2)N (¥)
B+
< @ 3 |0 (i o),
Ofl,lzﬁl:ém (1 4 4m2|z|2)N (v) 1
Note that

N B+ .
b <<1 TPy “”)
B+

al , o
= 2 L (MWQD@(JT ).

a;+Bi=a

Since deg 2™ < m + k and N > (n +m + k)/2, Lemma 2.44 gives

D% xﬁ—’—’y Ll R™
1+ an2z2)V ) © (R,

SO

DYlg]] < €Y IFT @)
C Yl

Ol + )™ (@) 1 -
This proves that for |y| < k the functional
= ()N D7o[y]

is bounded on L'((1 4+ |z|?)™/? dx). Thus there are functions g, € L such
that

IN

IN

(DDl = [ (o)1 + la)2 da



HARMONIC ANALYSIS 49

ie.

Dy = g,(2)(1 + [2[2)™
in the distributional sense. In particular, if v = 0, v(z) = go(x)(1 + |2|?)
is slowly increasing which proves (a). Moreover the distributional derivatives
of orders |y| < k are bounded on every bounded subset of R", so v belongs
to the Sobolev space W on every bounded subset of R" and the result
follows from the following result that we state without proof.

m/2

Lemma 2.45. If Q C R" is a bounded domain with smooth boundary, then
the Sobolev space W1(Q) is the same as the space Lip (Q) of Lipschitz
functions on Q. More precisely every Lipschitz function on € belongs to
WLo(Q) and every function in Wh°(Q) equals a.e. to a Lipschitz function.
Ifk > 1, then WE>(Q) c C*=1(Q) in the sense that every function in W
equals a.e. to a function in C*~1(Q).

The proof is complete. O

We will investigate now properties of the Fourier transform of tempered
distributions with compact support.

Lemma 2.46. Let Q C R™ be open and u € S,. If u(p) = 0 for all ¢ €
C3 (), then u(p) =0 for all p € Sy, such that supp ¢ C S

Proof. Let ¢ € S, suppy C (2. Let 1 be a cut-off function, i.e. n €
CPR™),0<n <1 nx)=1for |z|] <1 and n(z) =0 for |z] > 2, then
one can easily prove that n(z/R)p(x) — ¢(z) in S, as R — oo. Since
n(x/R)p(z) € C§°(2), the lemma follows. O

DEFINITION. Let u € §),. The support of u (suppu) is the intersection of all
closed sets £ C R” such that

e CFPMR"\E) = u(p)=0.
Thus the support of u is the smallest closed set such that the distribution
vanishes on C§° functions supported outside that set.

The lemma shows that we can replace ¢ € C§°(R™ \ E) in the above
definition by ¢ € S, with suppp C R"\ E.

Before we state the next result we need some facts about analytic and
holomorphic functions in several variables.

DEFINITION. We say that a function f : Q@ — C defined in an open set
Q C R” is R-analytic, if in a neighborhood on any point x¢ € §2 it can be
expanded as a convergent power series

(2.23) f@) =) aa(z—20)*, aa€C,

i.e. if in a neighborhood of any point f equals to its Taylor series.
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We say that a function f : @ — C defined in an open set 2 C C" is
C-analytic if in a neighborhood of any point zg € €2 it can be expanded as
a convergent power series

flz) = Zaa(z —20).

R™ has a natural embedding into C", just like R into C.
R"s>z=(x1,...,2p) = (1 4+7-0,...,2p,+1-0)=2+i-0€ C".

It is easy to see that an R-analytic function f in 2 C R™ extends to a C-
analytic function f in an open set Q2 C C, Q C Q. Namely, if f satisfies
(2.23), we set

f(z) = Zaa(z —29)%.

On the other hand, if f is C-analytic in @ C C", then the restriction f of f
to 2 = QN R" is R-analytic.

For example for any ¢ € R”, f(z) = ¢ is R-analytic and f(a:) =e*¢ is
its C-analytic extension.

DEFINITION. We say that a continuous function f : £ — C defined in an
open set 2 C C" is holomorphic if
of
0%;

=0 fori=1,2,...,n.

It is easy to see that C-analytic function are holomorphic, but the converse
implication is also true.

Lemma 2.47 (Cauchy). If f is holomorphic in'3
D™(w,r) = D (wy,71) x ... x D (wy,m,)

and continuous in the closure D"(z, 1), then

1 f(&)dé ... d&,
(2.24) 1) (2mi)" /8D1(w1,r1) /8D1(wn,7”n) (€1 —21)... (6n — 2n)
for all z € D"™(w,r).

Proof. The function f is holomorphic in each variable separately, so (2.24)
follows from one dimensional Cauchy formulas and the Fubini theorem. O

Just like in the case of holomorphic functions of one variable one can
prove that the integral on the right hand side of (2.24) can be expanded as
a power series and hence defines a C-analytic function. We proved.

Theorem 2.48. A function f is holomorphic in Q C C" if and only if it is
C-analytic.

13product of one dimensional discs.
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Now we can state an important result about compactly supported distri-
butions.

Theorem 2.49. Ifu € S/, has compact support, then 4 is a slowly increasing
C*™ function and all derivatives of u are slowly increasing. Moreover 4 is
R-analytic on R™ and has a holomorphic extension to C".

Proof. Let n € C§°(R™) be such that n(z) = 1 in a neighborhood of supp w.
Then u = nu in S}, and hence for 1) € S,, we have

i) = oyl =u| [ e ds
= [ a0 v o

We could pass with u under the sign of the integral, because of an argument
with approximation of the integral by Riemann sums.'4

Note that the function
F(zy,...,xn) = u[n(-)e*%im'(')]
is C'*° smooth and
D*F (a1, ) = ul(=2mi(-))*n(-)e >+ 0]

Indeed, we could differentiate under the sign of u because the corresponding
difference quotients converge in the topology of S,. It also easily follows
from Theorem 2.34 that F' and all its derivatives are slowly increasing. Thus
we may identify @ with F', so @ € C*°.

Moreover F' has a holomorphic extension to C" by the formula
F(z1,.. o) = ufn()e 0]
so in particular F'(zq,...,z,) is R-analytic. O

Remark. Note that if u € S/, has compact support, then we can reasonably
define u[e=2™*()] by the formula

ufe?m O] = ufp(-)e > 0],

since the right hand side does not depend on the choice of n € C§°(R™) such
that 7 = 1 in a neighborhood of supp .

Theorem 2.50. If u € S), and suppu = {xo}, then there is an integer m
and complex numbers aq, |a| < m such that

U= Z oD%y, .

laj<m

14Compare with the proof of Theorem 2.36.
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Proof. Without loss of generality we may assume that xg = 0. According
to Theorem 2.34 the distribution u satisfies the estimate

W@ <C Y pasle).

lal,|B|<m
First we will prove that for ¢ € S,, we have
(2.25) D%(0) =0 for || <m == u(p) =0.
Indeed, it follows from Taylor’s formula that
o(x) = O0(|z|™™) asz —0
and hence also
(2.26) DPp(z) = O(|z|" 181y as z — 0 for all |3] < m.

Let n € C§°(R™) be a cut-off function, i.e. 0 <n <1, n(z) =1 for |z| <1,
n(x) = 0 for |x| > 2 and define n.(x) = n(x/e). The estimate (2.26) easily
implies that

Pa,s(Mep) =0 ase—0

for all |a|,|3] < m.!® Note that ¢ — 1.0 = 0 in a neighborhood of 0, so
u(p — 1) = 0. Hence

u(@)] < ule —n-@)| + [ump) <0+ Y paplne) =0 ase—0.
o [Bl<m

This completes the proof of (2.25).

Let now i € S, be arbitrary and let

M) = v(@) = 3 Daozi(O) Lo

laf<m

Clearly
(2.27) D*h(0) =0 for |a| < m.
We have

s =n@ [ 3 28O e ) L y@hte) + (1 - n@)b).

ol

la|<m

Since (1 —n)1 vanishes in a neighborhood of 0 we have u((1—mn)y) = 0. The
equality (2.27) implies that ¢ = nh € C{°(R"™) satisfies the assumptions of

15Check it!



HARMONIC ANALYSIS 53

(2.25), so u(nh) = 0. Hence

u@) = ufn@)( 3 T )]

!
jalgm
of, [1(x)z® ol po
= Y vl [T Cneipeu).
! —_——
lo|<m ~ DaGo (1))
The proof is complete. o

Corollary 2.51. Let u € S),. If suppt = {&}, then u is a finite linear
combination of functions (—2mix)®e®™* €0 In particular if suppa = {0},
then u is a polynomial.

We leave the proof as an exercise.

Corollary 2.52. If u € 8§, satisfies Au =0, then u is a polynomial.

Proof. We have
—4r%€* 0 = (Au) =0 in S,
This implies that supp @ = {0}, so u is a polynomial by Corollary 2.51. O

3. INTERPOLATION OF OPERATORS

If 1 <p<gq<ooandT is a linear operator such that ||Tf|, < Al fll,
and also || T'f||; < B||f|l4, then it turns out that for any p < r < g there is a
constant C' such that ||T'f]|, < C||f]|. To be more precise we should clarify
on what space T is defined. For example we can assume that T is defined
on LP 4 L7 or just on the class of all simple functions. The result seems very
natural, but the proof is surprisingly difficult. Results of this type are called
interpolation theorems. More generally interpolation theorems assume that
an operator is bounded between some spaces and as a conclusion they give

a larger class of spaces between which the operator is also bounded.

The result stated above can be proved by the real variable methods, but
such methods require a lot of estimates and hence the result does not give
the sharp estimate for the norm of the operator T' : L™ — L". To get the
sharp estimate we need to use holomorphic functions. First we will prove an
interpolation result (the Riesz-Thorin theorem) using holomorphic functions
and this method is known as complex interpolation. Later we will prove an-
other, more general result (the Marcinkiewicz theorem) using real methods.
The Marcinkiewicz theorem is more general, but the estimate for the norm is
not sharp. However, the Marcinkiewicz theorem being more general applies
to the situations where the Riesz-Thorin theorem does not apply.
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3.1. Complex interpolation. In the following result we assume that all
L" spaces consist of complex valued functions.

Theorem 3.1 (Riesz-Thorin). Let (X, ) and (Y,v) be two measure spaces.
Let T be a linear operator defined on the set of all simple functions on X and
taking values in the set of measurable functions on'Y . Let 1 < po,p1,qo,q1 <
oo and assume that

1T fllgo < Mol f1lpo
1T fllgy < Ml fllps
for all simple functions on X. Then for all 0 < 8 < 1 we have
ITfllg < Mo=" M|l
for all simple functions f on X, where
1 1-6 0 1 1-60 0
= +— and - = + —.
p Po b1 q q0 q

By density, T has a unique extension as a bounded operator from LP(u) to
Li(v).

Before we prove the theorem we will show some applications. If py = gy <
p1 = q1, then 1/p =1/q is a convex combination of 1/pg and 1/p1, so p can
be any number between py and p;, and hence T : LP — LP is bounded for
any pg < p < p1 as stated at the beginning of this section.

Although the Young inequality, Theorem 2.3 has an elementary proof it
can also be concluded from the Riesz-Thorin theorem.

Proof of Thorem 2.3. Let g € L™, 1 < r < co. The operator Tf = fxg
satisfies the estimate

ITfll- < llgll-[[ £l (Theorem 2.2)
and
T flloo < |lgll-llfll-» (Holder’s inequality).

Thus taking gg = r, po = 1 and ¢ = oo, py = r’ we obtain from the
Riesz-Thorin theorem

—0 0
1F * gllg = 1T fllg < Mgl Mgl N fllp = llglls 1 £l

1 1-6 6 1 1—-60 0
=+, = +—, 0€(0,1),
P 1 r'’ q 00

where

i.e.
r

B o

P=2 "9 17129
so p ranges from 1 to 7/, while ¢ ranges from r to co and ¢~! = p~ 1 4+r~1—1.
O

6e€(0,1),

As we know, if f € LP(R"), 1 < p < 2, then f € L2(R") + Co(R"), but
we also have
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Theorem 3.2 (Hausdorff-Young). If f € LP(R™), 1 < p < 2, then
1Al < (1 f1lp-

Proof. Since

1Flloo < 1F11s 1F 112 < 1£ 112

then the Riesz-Thorin theorem gives

1 llg < 10200 F 1 = 1 f

where
1 1-6 46 1 1-60 6
- =—4-, —=—+4+—-, 0#€(0,1
q 00 +27 D 1 +2’ (0.1),
i.e.
2 2
=- =—— 0 1
=g P=5—g 0€(0.1),
so p '+ ¢ ! =1 and p is any exponent between 1 and 2. O

Remark. As we know (Problem 26), if p > 2, then there is a function f € LP
such that the distributional Fourier transform f € S, is not a function.

Proof of Theorem 3.1. Let

m
f=Y arexa,

k=1

be a simple function, where a; > 0, o € R and A, are pairwise disjoint
subsets in X of finite measure. We want to estimate

751, = sup | [ (D@t dv)].

where the supremum is over all simple functions

n
g=> biePixp, with |glly <1,
j=1

where b; > 0, 8; € R and B; are pairwise disjoint subsets of Y of finite
measure.

For z € C let
fZ:Za‘k(Z)ezakXAk7 gz:Zb?(Z)elﬁjXBja
k=1 j=1
where

/ /

p p q q
Pz)=—(1-2)+ —z, Qz)==1—-2)+=5=z.

(2) po( ) o (2) q(,)( ) 7
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P(z) and Q(z) are linear functions of z and hence the functions af(z), b?(z)

are entire since ay, b; > 0. Observe that P(§) = Q(0) =1,s0 fo = f, 96 = g-
Define

F(2) = /Y (T£.)(2)g- (x) dv ().
In particular

F(0) = [ (T)ga.

Thus we extended the integral [, (T f)g dv to a family of integrals depending
on the parameter z € C whose values form an entire function of z. Indeed,
from the linearity of T" we have

Z Z aP(Z)ij ' ¢ / T(xa,)dv.
k=1 j=1 B
The integrals in the last formula are finite, so F'(2) is an entire function.
Let us now restrict z to be in the closed strip
S={ze€C:0<rez<1}.

It easily follows from the formula that defines F'(2) that |F(z)| is bounded
on S. Now we will obtain a more precise estimate for |F'(z)| on the boundary
on that strip.

If rez =0, then

I1£=115 Zlak o p(Ay) Zakuz‘lk = £l

because the sets Aj are pairwise disjoint and |akj‘D Z)\ = a;:‘P(Z) = az/po‘
Similarly

ng\ = llgll?.

Now Holder’s inequality and the assumpt10ns about 1" give

F(2)] < 1T laollgellgy < Moll Floollg:llgg = Moll F12/7lgl1%/ .

If rez = 1, then the same argument gives

1f=151 = 1715, ng! = llglZ

and hence
F(2)] < My fIEP |1g)s/ "

The entire function F(z) is bounded on S and we can use arguments from
the theory of holomorphic functions to estimate |F'(z)| inside the strip by
the estimates on the boundary. We need
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Lemma 3.3 (The Hadamard three lines lemma). Let F' be a holomorphic
function in the open strip

S={ze€C:0<rez<1},

continuous and bounded on the closure S. If |F(z)| < By when rez = 0 and
|F(z)] < By when rez =1, then

|F(2)| < By ™*Bi** forz€S.
Before we prove the lemma we show how to use it to complete the proof
of the Riesz-Thorin theorem.

If re z = 6, the estimate for F(z) on the boundary of S and the three lines
lemma give

[F(2)|

IN

170\ 1—0 Y\ ?
<MOHfH£/p0Hg”ZI/qO) (MIHng/mHgHZ,/%)
= My MY\ flpllglly -

In particular if z = 6, then

| [ g = F@] < M2 1l
and the result follows upon taking supremum over all simple functions g
with [|glly < 1.
Proof of Lemma 3.3. Define the function
G(z) = F(2)(By " Bf) ™"

Note that |G(z)] < 1 on the boundary of S, i.e. if rez =0 or rez = 1. It
suffices to prove that |G(z)] <1 for all z € S.

Consider auxiliary functions G, (z) = G(2)e®*~D/" that will help us es-
timate G(z).

Since F is bounded on S and | By~ B}| is bounded from below on S, there
is M > 0 such that |G(z)] < M for z € S. We have

|Gn(x +iy)| < Me ¥ /ne@*=1/n < pre=v*/n for o 4y € S.
Thus Gy, (x + iy) converges uniformly to 0 in 0 < z < 1 as |y| — oo. Let
z € S. By the uniform convergence to 0 there is yg > [im z| such that
|G (z +iyp)| <1 for all z € [0, 1].

Since |G| is bounded by 1 on the boundary of the strip, also |Gy, is bounded
by 1 on that boundary. Thus |G| is bounded by 1 on the boundary of
the rectangle [0,1] X [—yo, o], so |Gn| < 1 in the entire rectangle by the
maximum principle. In particular |G, ()| < 1. Letting n — oo we conclude
that |G(2)| < 1. O

This completes the proof of the Riesz-Thorin theorem. O
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3.2. Real methods. If f € LP(u), 0 < p < 0o, then for any ¢t > 0
u{z : [f(@)] > t}) < [IfI[5-

Hence
sup tu{a: [f@@)] > HYP < ||flp-
This suggests the following definition.

DEFINITION. Let (X,u) be a measure space and 0 < p < oo. The
Marcinkiewicz space'® LP°(u) consists of all measurable functions on X
such that

fllnoe =00 (e = 17 > 1)/ < 0.
>
We also identify L% = L*° with Hf”oo,oo = Hf”oo

The previous argument gives

Proposition 3.4. For 0 < p < oo, LP(u) C LP>°(u) and || fllp < || fllp,co-

The inclusion LP C LP'™ is strict for 0 < p < oo. For example |z|~! €
LY (R), but |z|~! ¢ LY(R).

Exercise. For any 0 < p < oo find f € LP>°(R") \ LP(R").
Note that
1Efllp.co = IRl fllpco  for ke C
but

If +9||p,oo < Cp(”f“p,oo + ||9||p700)

where C), = max(2, 21/p), so LP*° is not a normed space, but a quasi-normed
linear space when 0 < p < .

We say that f, — fin LP*if || f — fp|lp.cc — 0.

DEFINITION. We say that an operator T' from a space of measurable func-
tions into a space of measurable functions is subadditive if

IT(f1+ f2)(2)] < [Tfi(z)| + [Tfao(z)|  ae.
and
[ T(kf)(@)| = [k[|Tf(z)|] forkeC.
We say that a subadditive operator T': LP(u) — Li(v) is of strong type (p, q)
if it is bounded, i.e.

ITfllqg < Clifllp
for some C' > 0 and all f € LP(u) and it is of weak type (p, q) if

1T fllg00 < Cllfllp

for some C' > 0 and all f € LP. If ¢ = oo, then weak type (p, 00) is the same
as the strong type (p,o0), because L = L°.

16The Marcinkiewicz space is also called the weak LP and denoted by weak-L? or LZ,.
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Equivalently T is of weak type (p,q) if for all ¢ > 0

q
p({x | Tf(x)] > t}) < <C||tf||p>

It follows immediately from Proposition 3.4 that operators of strong type
are also of weak type.

It is important to observe that the LP norm of a function f can be com-
puted if we know measures of the level sets {z : |f(z)| > t}. Namely we
have

Theorem 3.5 (Cavalieri’s principle). If u is a o-finite measure on X and
® : [0,00) — [0,00) is increasing, absolutely continuous and ®(0) = 0, then

[ atsman= | S (S > 1) de
X 0

Proof. The result follows immediately from the equality

JRE //'f 1) dt dp(z)

and the Fubini theorem. O

Corollary 3.6. If u is a o-finite measure on X and 0 < p < 0o, then

/ |fIPdp =p/ootp1u({\f\ > t})dt.
X 0

While the space LP*° is larger than LP the difference is not big, because
we have

Theorem 3.7 (Kolmogorov). If u(X) < oo, then LP*°(u) C L (u) for all
0 < g < p. Moreover

1/p
q _
1l < 2V/a (p_ q) W)Y oo

Proof. Fix tg > 0. Using Corollary 3.6 and the estimates p({|f| > t}) <
wu(X) for 0 <t <tgand pu({|f] > t}) < | flhoot™P for t >ty we get

to
[ < q( [ [ tq“dt)
0 to

q —
= () + Tl

Then the result follows by choosing!” to = (¢/(p — q))Pu(X)"YP(| f||p.ce- O

TThis is a general trick. The right hand side is a sum of two expressions depending
on to and the inequality is true for any top, so we minimize the right hand side over to.
Equivalently, we choose to such that both summands on the right hand side are equal to
each other.
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Theorem 3.8 (Marcinkiewicz). Let (X, ) and (Y,v) be two measure spaces
with o-finite measures. Let 0 < pyg < qop < 00, 0 <p1 < q1 < 00 and gy # q1.
Let T be a subadditive operator defined on the space LPO(p) + LP'(p) taking
values into the space of measurable functions on'Y . Assume that

1T fllgo.00 < Mol| fllpo  for f € LP(p).

1T fllgr.c0 < Mullfllpy for | & L7 ().

Then for any 0 < 0 < 1 there is a constant M depending on My, My, po,
P1, qo, q1 and 6 only such that

ITfllg < Ml fllp for f e LP(n),

1 1-6 ¢ 1 1-6 6
+ +

where

Y

p Po b1 q qo q1

Although the Marcinkiewicz theorem seems very similar to the Riesz-
Thorin one, the two results are very different. Here the L" spaces can consist
of real valued functions, but in the Riesz-Thorin theorem they must be
complex valued, because of the use of holomorphic functions. The price we
pay for this is that the constant M is not as good as the one in the Riesz-
Thorin theorem. Moreover we assume now that pg < ¢gg and p; < ¢ and
there was no such requirement in the previous interpolation result. On the
other hand we allow exponents to be just greater than 0 and not greater
than or equal to 1 and the operator needs only to be subadditive. However,
the main difference which makes the Marcinkiewicz theorem so powerful is
that we require the operator to be of weak type, while in the Riesz-Thorin
theorem the operator had to be of strong type. Later we will see that in
many situations it is possible to verify the weak type, so we can apply the
Maricnkiewicz theorem, while in such situations the Riesz-Thorin theorem
is useless.

We will prove only a special case of the Marcinkiewicz theorem, the case
which is the most important in its applications.

Theorem 3.9 (Marcinkiewicz). Let (X, ) and (Y, v) be two measure spaces
with o-finite measures. Let T' be a subadditive operator defined on LP°(u) +
LP(u), where 0 < pg < p1 < 0o, and taking values into measurable functions
on Y. Assume that there are constants My, My > 0 such that

1T fllpo,co < Mollfllpo for f € LP(p)

| T fllpyoo < M|l fllpy for f € LP ().
Then for any pg < p < p1

|Tfllp, < Ml fll, for f € LP(u),

where

P p 1/p
M =2 ( + ) My~ MY
p—Po P1—P
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1 1-06 0
- = +—, 0<O<1.
p bo y4|

Proof. Let f € LP(u) and t > 0. We decompose f as f = fo + f1, where

Jo=Fxqpsey  f1=Ixqri<es -

The constant ¢ will be chosen later. It is easy to see that fy € LP°(u) and
f1 € LP1 (). We have

T f(x)] <|Tfo(x)] + [T fr(x)]
SO
{ITf] >t} c{ITfol > t/2} U{IT /1| > t/2}
and hence

v({ITfI > 1}) <v({ITfl > t/2}) + v({ITH1] > £/2}).

We will split the proof into two cases.

CASE 1: p; = co. Choose ¢ = (2M7)~. We have

HTflnoo < Ml”fluoo < Mjct = -

S0
v({ITfil >t/2}) =0.
By the weak (po,po) type we have

V([T h| > 1/2)) < <2M° ||fo\|po>p0

and hence

ITHE = p / (T > 1)) dt
Spm%w/ ro L foP0 dt
0

— p(2Mey / o1 / F@)[P du(z) di
{z:|f(z)|>ct}

0
[f(x)l/c
= pr [ If(a |p°/ #-701 dt dp(x)

po [ (P2 du

= 2pMp°Mp PlfIE.
p—po 0! P

If 0

1 1-

- = +—, 0<O<1,
p Po oo
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then the above estimate reads as

p p 1—-0 1 70
I, < 2 (p _po) MO

CASE 2: p; < oo. Now we have two inequalities arising from the weak type
estimates

ARl > 0120 < (S ol )
AIThI> 02 < (B0 )

By an argument similar to the one used in Case 1 we have
oo
ITfl; < p/ PP (2Mo)P | fo 5 dt
0

o0
+op / PPl @M | £ dt
0

N (p —ppo (2Mp)P0 e + P fm (QMl)plcpl_p> 171

If we choose now ¢ in a way that
(2M0)P0 cPo = (2M1)p1 cP1

the desired estimate will follow. O

3.3. The Hardy-Littlewood maximal function. As an immediate ap-
plication of the Marcinkiewicz theorem we will prove the Hardy-Littlewood
maximal theorem. For a locally integrable function f € L (R") the Hardy-
Littlewood mazximal function is defined by

My () = supé Vg, wem

r>0

The operator M is not linear but it is subadditive.

Theorem 3.10. If f € LP(R"), 1 < p < oo, then Mf < 0o a.e. Moreover
(a) The operator M is of weak type (1,1), i.e. for f € L*(R™)
n

(3.1) fz: Mf(z)> )| < i/ f| forallt>0.

(b) If f € LP(R™), 1 < p < o0, then Mf € LP(R™) and

1/p
n p
1Ml < 2057 (S20) 1
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Proof. It immediately follows from the definition of the maximal function
that

[Mflloo < N1flloo -

Once we prove that the operator is on weak type (1, 1), i.e.!8

Moo < 5",
the boundedness of M on L?, i.e.

1

will follow from the Marcinkiewicz theorem. Thus we are left with the proof
of the inequality (3.1). To this end we need an important covering lemma.

1/p
n p
M, <257 (p_) T

Theorem 3.11 (5r-covering lemma). Let B be a family of balls in a metric
space such that sup{diam B : B € B} < oo. Then there is a subfamily of
pairwise disjoint balls B C B such that

U Bc | 5B.

BeB BepB’

If the metric space is separable, then the family B’ is countable and we can
arrange it as a sequence B' = {B;}°,, so

U BC©5B7;.

BeB =1

Remark. Here B can be either a family of open balls or closed balls. In
both cases proof is the same.

Proof. Let sup{diam B : B € B} = R < co. Divide the family B according
to the diameter of the balls
R . R

Clearly B = U?; Fj. Define By C Fi to be the maximal family of pairwise
disjoint balls. Suppose the families By, ...,B;_1 are already defined. Then
we define B; to be the maximal family of pairwise disjoint balls in

j—1

Fin{B: BNnB = forall B ¢ | | B}

i=1
Next we define B’ = Ujoil Bj. Observe that every ball B € F; intersects
with a ball in (J/_, B;. Suppose that BN By # 0, B, € |J_, B;. Then

: R R :
diam B < 1= 2- Y] < 2diam B;

and hence B C 5B;. O

18T his inequality is equivalent to (3.1).
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Let f € LY(R") and E; = {x : Mf(z) > t}. For x € Ey, there is r, > 0

such that
7[ |fl>t,
B(z,rz)

|Mwm<ﬂ/ 71,

B(z,rg)

SO

Observe that sup,cp, 7o < 00, because f € L'(R"™). The family of balls
{B(x,14)}zep, forms a covering of the set Ey, so applying the 5r-covering
lemma there is a sequence of pairwise disjoint balls B(x;,7,), i = 1,2,...
such that E; C J;2; B(z, 5rs,;) and hence

B <57 |Blaira)| < o / mé/fL

The proof is complete. O

As we shall see later the maximal function has many applications in anal-
ysis. Now we will show one such application.

3.4. Theorem 2.28 revisited. The following result is related to Theo-
rem 2.28

Theorem 3.12. Suppose that ¢ € L'(R") has an integrable radially de-
creasing majorant

U(z) =n(lz[) € L'(R").
Then for f € L{ (R") and all z € R"

loc

(3.2) sup(f * ) (2)| < [[W[LMf(z) .

e>0

Proof. The proof is similar to that of Theorem 2.28 and also now we will
prove the result under the additional assumption that n is absolutely con-
tinuous. As in the proof of Theorem 2.28 we conclude from the integrability
of U that
(3.3) lim r"n(r) =0, lim r"n(r)=0.

r—0 r—00
Since both sides of the inequality (3.2) commute with translations we can
assume that z = 0. We can also assume that M f(0) < oo as otherwise the
inequality is obvious. We have

(FredO] < [ 1f@)dy

_ /0 Tt ( /S If(s6) da(9)> e (s fe) ds = ©
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Let
= 0)| do (6
o) = [ 110 doto)
and .
= "lg(s)ds = dy .
G = [ s oeas= [ Iy
Clearly
G) =" Fw)]dy < wnr" MF(0).
B(0,r)
We have
0 = OoG’(s)e_”n(s/g)ds
0 . .
(34) = Lim G(s)e "n(s/e) — lim G(s)e " 1) (s/e) ds =
Since

G(s)e™"n(s/e) < wnMF(0)(s/)"n(s/e),
and the right hand converges to 0 as s — 0 or s — oo by (3.3), the fist limit
at (3.4) equals 0 and hence

R
Q = — lim G(s)e " 1 (s/e) ds
r—o0 YT
R/e
= — lim G(se)e ™ (s)ds
28 /e
R/e
< — lim wan(O)/ s"n'(s) ds
0 r/e

parts & (3.3)

nwn, M f(0) /000 s"In(s) ds
= MFO) ][ .

The last equality follows from the fact that nw, equals to the (n — 1) di-
mensional measure of the sphere S”~1(0,1) and the integration in spherical
coordinates. O

4. TRANSLATION INVARIANT OPERATORS

DEFINITION. We say that a bounded operator 7' : LP(R™) — LI(R"™), 1 <
p,q < 0o commutes with translations if

T(rnf) = mT(f) for f € LP(R") and h € R™.

The set of all such operators is denoted by MP4(R"™). Clearly MP4(R"™) is
a normed linear space as a subspace of all bounded operators B(LP, L?).
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Theorem 4.1. Suppose T € MP4(R"), 1 < p,q < oo. Then there is a
tempered distribution u € S}, such that

To=uxp forpes,.

Proof. We will need two lemmas.

Lemma 4.2. If T €¢ MPIR"), 1 < p,q < oo and ¢ € S,, then for all

multiindices «, the distributional derivatives D*(T) belong to LY and
D*(Ty) = (D7) .

Lemma 4.3 (Sobolev). If f € W"tL4(R"), 1 < q < oo, then f equals a.e.

to a continuous function (still denoted by f) such that

[F0)] < C(n, O flln+1.0 -

Assuming for a moment the two lemmas we will show how to prove the
theorem. Let T € MP2(R"), 1 < p,q < oo and ¢ € S,. According to
Lemma 4.2, T € W™4(R") for all m. In particular Tp € W"H14(R"), so
Ty is a continuous function and the Sobolev lemma gives

(Te)(0)] < Clnya) Y [IDX(Ty)l,

|B|<n+1

= C(n.q) Y [T(D),

|B|<n+1

Cn, )T lmwa > 1Dl
|B|<n+1

IN

We have

1/p
D%l = ([ @ P ) D) )

IA

1/p
sup (1+ Jal)" D@ ([ (14 Jal) "7 do
JJGR” n

<0

IN

C D Paslp),

|a|<n+1
SO

(Te)(0) <C > pasle).
lal,| B|I<n+1
Thus

v(p) = (T9)(0)
defines a tempered distribution v € S),. Let u = 0. We have
(uxp)(x) = (0x¢)(2) =0[r0p] = v[12¢]
= (T(72¢))(0) = (7(T)) (0) = (T) (x) .
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We are left with the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Let ¢, € S,,. T € L4, so the distributional deriv-
ative 0;(T¢) € S}, is well defined. Since

o(r) — p(z — he;)
h

in the topology of S,, we have

— 0jp(x) ash—0

0Tl = ~ [ (TP ds
¥la + hey) — Y()

= —lim Rn(Tw)(x) Y dx
T —(T — he;
~ lm i o(x) (hcp)(x €J)¢(x)dx
To(x) — (T_pe. T
= i [ p(x) (Thh] )y () () di
To(z) — T(Tpe.
= i [ p(x) }(LT he; #)(2) O(x) di
DY — of — hes
~ lim RHT<¢() Q”ff e])> () 9 (z) do
- [ TR @@ .
Thus
9j(Tp) = T(9;¢)
and by induction we have
D(Ty) =T(D%) € L1(R").
The proof is complete. o

Proof of Lemma 4.3. Let n € C3°(R™) be a cut-off function'® and let
nr(x) = n(x/R). Then nrf € L'. Since the weak derivatives satisfy the
Leibniz rule

(4.1) D*(nrf)= )
Bitvi=a

and D%inp € C$° we conclude that nrf € W"HLI(R™). The elementary
inequality

al
Bili!

DﬂinRD% f

1< Cn)1+ |m’)—(n+1) Z |(—2mix)?|

|| <m+1

Yo <n<1, @) =1if 2] < 1, n(z) =0 if [¢| > 2.
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gives
() ()] < Cn)(1+ [z~ "D | ;§:+1!(-—2ﬂix)a(an?A($)|
< Cn)(1+ )=V | ;lea(aner
< Cn)(1 4+ |z|)~(+D) | §:+1||D"(n3f)lll
< C(n,R)(1+|z|)~ “+1|Z:+1HDaf|q,

where in the last inequality we applied (4.1) and Hélder’s inequality. Inte-
grating both sides with respect to z we have

e f) Nl < Cln, B[ fllntq-

Since nrf € L' and (nrf)" € L' we conclude that ngf € Cp. Since f(z) =
(mrf)(z) for |z| < R continuity of f on R™ follows. Moreover the inversion
formula gives

1O =) O) = | [ (o

This completes the proof of Lemma 4.3 and hence that of Theorem 4.1. O

< C(n, R)[| flln+1.4

1

If 1 < p,q,r <ooand ¢! = p~! +r~1 — 1, then according to Young’s

inequality (Theorem 2.3),

1F* gllq < 1 1pllgll-

so T f = f+*g defines an operator in MP4. Observe that ¢ > p and if r ranges
from r =1tor =p =p/(p—1), then ¢ can be any exponent p < ¢ < 0.
The fact that g has to be greater or equal to p is a very general one.

Theorem 4.4 (Hoérmander). If 1 < ¢ < p < oo, then MP4(R™) = {0}.

Proof. We will need the following result which is interesting on its own.
Lemma 4.5. If f € LP(R"), 1 < p < oo, then
lim | f + fllp = 27(1f |-
|h| =00

Proof. Let ¢ € C3°(R") be such that ||f — ¢l|, < &. Then?
7 f + Fllp = 17ne + @llp| < Nlma(f — @) + (f = @)lp < 2¢.
If |h| is large enough, then the supports of ¢ and 7, are disjoint and hence
I + @llp = 2P llell, -

2
Ofllzll = llyl] < llz =yl
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Thus
limsup [[|7.f + fllp = 2/7lello| < 2e.
|h]|—o0
Since € > 0 can be arbitrary the lemma follows. O

Now we can complete the proof of the theorem. For f € LP(R") we have
172 (T(f)) + T(Hllq = 1T (e f + Hllg < Nl pwallrnf + flp-
Letting |h| — oo the lemma yields
2Y4T(F)lg < T lara2 (| flp
SO
IT | s < [T ) aawa2' /P71

which implies T' = 0. O

The same argument shows that the only translation invariant operator
T :Co(R™) — LI(R™), 1 < g < oo is the zero operator.
Theorem 4.6. Let 1 <p<qg<oo,p<oo,q>1andT € MPYR"™). Then

T:ILPNLY — L¥
is a bounded operator, so it uniquely extends to T € MY Moreover
1T patwr = T | At9a -

In other words, we have isometric identification
MPA(RY) = M7 P (R™).
Proof. Let g € LY. Then
LPsfe | T(f)g

R

is a bounded linear functional on LP, so there is a unique function T*g € L?’
such that

/nT(f)gz - fTg.

In other words T™ : LY — LP is the adjoint operator. It is easy to see that
T* is translation invariant, so 7% € M?*" and thus

1T\ ppar 2t = 1Tl ppa

as the norm of the adjoint operator equals to the norm of the operator.
Indeed,

1T pgar = sup [[T"glly = sup sup fT*g
llgll <1 lgll <1 [ fllp<1 J/R"

— sup sup / T(f)g = | T v
Ifllp<1|glly<1J/R™
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Let u € S}, be such that
Teo=uxp forpeS,.

For ¢, ¢ € §,, we have
(Tl = (T9)
= *

i.e.
T*o=ux*xp forpes,.
Since
T*p=uxp=(ux@) = (Tp)
we see that T* € MY??" implies that T € M7 ¥ and
1T paror = T pgarr = [T | a2 -

Thus MP4 c MV isometrically, but the same argument applied to MY
in place of MP? gives the opposite inclusion, so MP? = M?-P isometrically.
O

Theorem 4.7. T € MY (R™) if and only if

TH@ = (Femia) = [ fa=pdut), fel'®)

for some complex-valued measure of finite total variation p € B(R™). More-
over

1T agrr = [l -

Proof. If p € B(R™), then T'f = f % p1 is a translation invariant operator
and

(4.2) T[] g < [l

by Theorem 2.5. Suppose now that T € MU', Then there is u € S/, such
that

Ty =uxvy forp€S,.
Let ¢ € Spy ¢ >0, [puyp = 1 and ¢ (x) = e "p(z/e). It follows from
Problem 14 that for ¢ € S,,, @ * ¥» — 1 in the topology of S, as ¢ — 0.
Since ||¢c|l1 = 1, the family {.}. is bounded in L!, so the family

{uxpete ={Tye}e C L (R") C B(R™)

is also bounded. According to the Riesz representation theorem (Theo-
rem 2.4), the space B(R") is dual to the separable Banach space Cy(R™), and
hence it follows from the separable case of the Banach-Alaoglu theorem?!
that there is a weakly-* convergent subsequence

u* e, — p€BRY) ask— oo,

21Theorem 14.6 in Functional Analysis.
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i.e. for every g € Cp(R"™)

(43) | o) @utrde = [ gla)dnto).

We claim that u = p. Indeed, for g = ¢ € S,, (4.3) means that
(u* Qe )[Y] = ul@e,, * 9] = p[Y] as k — oo

Since ¢¢, * ¥ — 1 in S, continuity of u gives

ulp] = ply] for 9 € Sn,
i.e. u = p. For g € Cyp(R™), (4.3) yields

[ adn] < lalosup |Teels < ol T

Now taking the supremum over g € Cy(R"), ||g|/cc < 1 and applying Theo-
rem 2.4 we obtain

il < T pgrn
which together with (4.2) yields ||T'|| pq11 = || )] O
Theorem 4.8. T € M?*2(R") if and only if there is a function m € L°°(R")
such that*?
Tf=F "m(Ff)) forfeL*R").
Moreover
17| 22 = [lmloo -

Proof. If m € L, then if follows from the Plancherel theorem that the
operator
Tf=F " (m(Ff))
is bounded on L?. Indeed,
IFHm(F )2 = m(FFll2 < [Imllocl| Ffllz = ol fl2-

It is easy to see that the operator T is translation invariant, so T € M??
and the above estimate yields

(4.4) T[] pg22 < flmloo -
Now let T € M?? and let u € S/, be such that T'p = u % ¢ for ¢ € S,,.

Let @o(z) = e ™*. Recall that ¢g = ¢o (Theorem 2.14). We have
Yol = Poth = (u * (pO)A = (TQO())A € LQ(RH) .
Hence
(o) ()
wo(x)
Note that the multiplication by 1/ (z) = €™ is not allowed in S/,, because

2
olal

m(x) = € L%OC .

is not slowly increasing, so we cannot conclude that m = @ (at least

22Compare with the operators defined by the formulas (2.20) and (2.21). According to
the theorem the operator (I — A)™" is bounded on L?, while (I — A)" is not.
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not now). However, m(z) is a well defined function in L2 and, of course,

we want to prove that m = @, but we have to be very cautious and check
that every step in our proof is justifiable.

First we will prove that
(4.5) aly] = mly] for ¥ € CF(RM).

Observe that for ¢ € C§°(R™) both sides of this equality are well defined
with the right hand side understood as

L D@ o ) (o)) e
miyl = [ P v = [ (o) (g0 o)
= (po)iy ¥ = dlpopy '] = aly]

which proves (4.5). We could do this calculation only for ¢) € C§° and not
for ¢ € S, because we do not know if ma is integrable and also, because
Yy L does not necessarily belong to S, for ¥ € S,,.

If o € C§°, then om € L? C 8!, and (4.5) easily implies that

ot =pm inS).

Thus
lemlla = lleillz = [|(ux @) 2
= |luxpll2=[T(®)ll2
< Tl pzzllPllz = 1T a2 [0l 2
and hence

L U7z = im@)) [e(@) = 0
for all ¢ € C§°(R™). This, however, easily implies that m € L> with
(4.6) [mlloo < 1Tl pz22 -
Since m € L, equality (4.5) yields
t=m inS).
Finally for ¢ € §,, we have
(Te) = (ux @) = ¢t =mp,

S0

Tp = FH(m(Fp))

and by density
Tf=FY(m(Ff)) for fe L



HARMONIC ANALYSIS 73

Moreover inequalities (4.4) and (4.6) give
1T a2z = [[m]loo -
The proof is complete. O

Theorem 4.9. If T' ¢ MPP(R"), 1 < p < oo, then there is a bounded
function m € L>®(R"™) such that

Ty =F Y m(Fy)) forpeS,.

In other words we can identify MPP with a subspace of M>2.

Proof. Let 1 < p < 0o and T € MP?. Then T € MP ¥ by Theorem 4.6.
Since 2 is between p and p’ it follows from the interpolation theorem?? that
TeM?>*2 Ifp=1,then Tp = ¢ *pu=F *(m(Fp)), where m = fi € L*°.
O

DEFINITION. Given 1 < p < oo we define M,(R™) to be the space of bounded
functions m € L>*(R™) such that the operator

Tmp =F ' (m(Fp)), ¢ €Sn
is bounded on LP. The norm of m in M,(R") is defined by

Imlla, = 1Tl pwr -

Elements of the space M, (R") are called L? multipliers or LP Fourier mul-
tipliers. The function m is also called the symbol of the operator T,.

It follows from Theorem 4.8 that
Mo (R"™) = L>=(R"), [, = [Imlloo

and Theorem 4.7 shows that M;(R"™) consists of functions that are Fourier
transforms of measures of finite bounded variation.

If1<qg< 2and m = € My, then by Theorem 2.5 and Theorem 4.7
we have

[Tmplly = lle* pllg < el Fllg = lmliaa i £l
so My C Mg and [lm|la, < flmila, -

If1<qg<p<2and m e M, then according to Theorem 4.6
T : L= L9, Tp: LY - LY, || Tnlpmes = [Tl e -
Since ¢ < p < ¢/, the Riesz-Thorin theorem gives
T : LP — LP, | Tl pmpe < [T || pava -
Hence M, C My, ||m|lm, < |mllm,. Thus for 1 < g < p <2 we have
MiCcMyC M, CMy=L>,
(4.7) [mlloe < lImllag, < lImllnm, < llmlim, -

23Riesz-Thorin or Marcinkiewicz.
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Finally, if 1 < p < 2, then Theorem 2.7 implies that M, = M, isometri-
cally.

Example. The function m(¢) = e?™" is an LP multiplicator for all h € R”
and the corresponding operator is Ty, f(z) = f(x + h).

Theorem 4.10. If 1 < p < oo, then My(R") is a commutative Banach
algebra with respect to a pointwise multiplication.

Proof. Since Tom, +bmy = a1, + 01y, it follows that M, is a linear space
and

lamy + bmallm, = [Tamy+bms [ aee < lalllma e + [bl][ma] pme

shows that || - [ a4, is @ norm. Since Tynym, = Tiny Trn, We have

[mamallat, = 1 Tmimsllmre < [malla, [Imallag,

so M, is a complex commutative algebra with the unit element m = 1,
[m|[a1, = 1 that corresponds to the identity mapping.

Thus it remains to prove that M, is complete with respect to the norm.
If 2 < p < o0, then M,, is isometric to My, 1 <p’ < 2, so we can assume
that 1 < p < 2. Let {ms} be a Cauchy sequence in M,,. By (4.7)

[m — mylleo < [[my — myglam,

and hence {m;} is a Cauchy sequence in L*°. Thus it converges in the L>
norm to a bounded function m € L*. We have to prove that m € M, and
m; — m in M,,.

Fix ¢ € §,. The dominated convergence theorem yields
Tm)0) = [ GQmOE™¢de > [ pm(O™ed = (Tp)(o).

Given € > 0 let N be such that ||, — T, ||amer < € for j,k > N. For
7 > N Fatou’s lemma implies

/ |(Trm; — T)plP do = / lim |(Tyn; — Ty, )p|P da
n R

n k—00

< liminf/ (T, — Ty, )| de
k—o0 n J
< lellp,
ie. [|[Tim; — Tmllmer < e Thus Tp,, € MPP and Ty, — Ty in MPP, e
m € M, and mj; — m in M,,. O

The following result easily follows from the properties of the Fourier trans-
form.

Theorem 4.11. Let m € M,(R"), 1 <p < oo, x € R” and h > 0. Then

(&) [lmzmllag, = Ml -
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)
(©) lmllam, = llmlla,-
% 1™ O ag,, = [lml|ad, -

The following result is often useful.

Proposition 4.12. Let m € M,(R"), 1 < p < oo and ¥ € LY(R"). Then
m 1 € My(R") and

[lm s bl ag, < llallmllag, -

We leave the proof as an exercise.

In particular if ¢ € C§°(R"), [gn¥dx = 1 and ¢ = e "p(x/e), then
me = m * ¢, satisfies m. € C°, m. € My, ||me||am, < [|mflam,. Hence for
every ¢ € S,

(Tn.p)(@) = (Tmp)(x) ase—0
for every x € R".

The next result is a kind of Fubini theorem for Fourier multipliers.

Theorem 4.13. Suppose that m(&,n) € M,(R"™™), 1 < p < oo. Then for
almost every & € R™, the function n— m(&,n) is in My(R™) and

[m(&, M mp@my < Ml g, @tm) -

Proof. Since m € L (R™"™) it follows from the Fubini theorem that for
a.e. £ € R" m(§,-) € L*°(R™) and

(4.8) M€ )lloo < llmfoc -

Fix p1,91 € S, and @2, 99 € Sy, For £ such that (4.8) is satisfied we define

MO = [ (€. )pa) el = [ ml&maniatn dy.

m

Observe that M € L*°(R"™) with

1Moo < llmlloclf2tnllr
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Thus M defines a multiplier (at least an L? multiplier) and we have
‘/" (wldd_‘ M(&)@1(€)¥n (€ %‘

- //Rn+m m(&,n)@1(E)@a(m)n (§)a(n dndg‘

- //an m(&,m)(p192)" (&, m) (U11h2) ¥ (€, ) dﬁdn‘

- /O/n+m/On(@1¢2)A)V(¢1¢2)d§dn‘

[Im2l| sy @entmy |1 | |2l [ | 1402 -

Taking the supremum over ¢; € S,, with ||11]|,y < 1 it follows that

IN

[(M 1) [|,, < llmllag, sy 02 llp 192l 01l
ie. M € My(R™) with
[ M| p,&ry < 1Ml g, mrtmy 02 lpl 12l -

Since || M |oo < [|M || A4, (rn) We conclude that

‘/m (m(&,)@2()) " (ma(n) dn| < [[ml|pg, s 2]l |2

and taking the supremum over ||¢s||,; < 1 yields the result. O

The above theory of Fourier multipliers is very beautiful, but there is
one problem: we do not have good examples. Indeed, we characterized all
L? multipliers as bounded functions, but we do not know what bounded
functions define L? multipliers for p # 2. The only examples of LP multipliers
that we know so far come from translation invariant operators on L'. Indeed,
every such an operator is a convolution with a measure and it is also bounded
in LP for all p. Thus all functions that are Fourier transforms of measures
of finite total variation define P multipliers, but on the other hand there is
no need to use the theory of Fourier multipliers to deal with convolutions of
measures and there is a huge gap between the space of Fourier transforms
of measures and all bounded functions. In the following sections we will
construct more and more LP multipliers, but as we shall see it is always a
very difficult task.

5. THE HILBERT TRANSFORM

The function f(z) = sinx/x is not integrable on [0, 00), but we define its
integral as an improper one

00 o3 R
(5.1) / e = lim [ 2gp =T,
0 X R—o0 Jg X 2
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A similar problem appears if we want to define the integral
o
/ plz) dx, v eSR).
o T

Since the function 1/z is not integrable in any neighborhood of 0, in the
case in which ¢(0) # 0, the integral diverges. This suggests that we should
define this integral as a kind of an improper integral known as the principal
value of the integral

(5.2) (p.v. i) [¢] =p.v. /oo #le) dr = lim o) dx .

—0 X e—0 |x‘25 X

The limit exists when ¢ € S(R) and it actually defines a tempered distribu-
tion.

Theorem 5.1. If ¢ € S(R), then the limit at (5.2) exists and defines a
tempered distribution p.v.1/x € S'(R) such that

(b1 ) 61| < 201l + el

/ #(0) 4 — 0.
e<lz|]<1 L

Proof. Note that

so we have

/$|>€ SDE:) e /s<|x|<1 M ot /|z>1 @Ecx) d.

For the first integral on the right hand side we have

_ 1
/ (@) = ¢(0) dr = / /cp'(tx)dtdx
e<|z|<1 T e<|z|<1 JO

1
— / /go’(tx)dtdx ase — 0
lej<1Jo
and hence
[ee) 1
p.v./ L(x) d:z::/ / o' (tr) dtd:v—l—/ #(z) dx .
—o0 T lz|<1 /0 z[>1 ¥

/ o(7) g d
lz|>1 %

X
<suwplrp@)] [ % = 2wl
1
[ [ enaead] <20
lzj<1Jo

z€R |z|>1
the theorem follows. O

Since

and
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Exercise. Prove that for ¢ € S(R)

00 R
p.v. / #(w) dr = lim o' (x)

—00 xr R—o0 R

()

Since p.v.1/z is a tempered distribution, we may try to compute its
Fourier transform.

Theorem 5.2.

X

(jr Dy, 1>A (€) = —isgn (€).

Proof. For ¢ € S(R) we have
(p.v. 1) [¢] = lim elz) dx,

X e—0 ‘I|>€ x

SO
1 1.
gg<1') = E X{mZE} — p.V. ; m S/(R),

and hence
I\
(5.3) Je — <p.v. x) in §'(R) as ¢ — 0.

Since g. € L? we can compute its Fourier transform using Theorem 2.31.24

R

gz—:(&) = lim gz—:(l')e_%rmg dr
R—o0 R

Bl o 1 o
= lim —emwE 4 pm2mi(=2)E ) gy
R—oo J, \x (—x)
R 6727”‘:1:5 _ e27m'z§

= lim dr
R—oo Jo X

R .
— lim —Qi/ sin(2rz) o
13

R—o0 T

R 2
= lim —2isgn(§)/ Mdm
R—o0 e x

2rl¢lR
= lim —2isgn(£)/ Y
R—oo 2m|€le )

> siny

= —2isgn(§)/ dy,
2rlele Y

24The limit is understood in the L? sense, but we will prove that the limit also exists
in the pointwise sense, so the pointwise limit must be equal to the L? one.
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where the limit exists as an improper integral, see (5.1). Note that the above
computation gives also

(5.4) |Ge(§)] < M independntly of &
and
. . ™ .
(5.5) lim g.(€) = —2isgn (€) 5 = —misgn (€).
Thus (5.3) yields the result. O
DEFINITION. The Hilbert transform of a function f is defined by
1 *® f(x —
Hf(xr) = —pwv. / Ja=y) dy
T —00 Yy
1 _
= —lim [ =) dy
T e—0 ly|>e Yy

L f()
= —lim —=d
/| y

Te0 Jjgy>e T — Y
and the question is for what functions and in what sense the limit exists.

Note that if ¢ € S(R) and u = p.v.1/z € §'(R), then

Hop(a) = ~ulp( )] = —(u9)(z)

so Hp € C*, and Hy and all its derivatives are slowly increasing (see
Theorem 2.36). Note also that

(Ho)\(€) = »

™

(ap)(€) = —isgn ()$(¢)
and hence y
He(x) = (—isgn()p() (z).
Since m(§) = —isgn (§) € L*(R), the Hilbert transform defines a transla-
tion invariant operator on L?. Actually we have.

Theorem 5.3. If f € L*(R), then

(5.6) Hf(x) = (—isgn () /()" ().

Hence H : L?>(R) — L*(R) is an isometry of L* onto L2,
IHfllz=lfllz for f € L*(R)

with the inverse operator satisfying
H'=-0.

e, 1 f(y)
7= 7T/|$—y|>ax_ydy’

Hef > Hf inL?ase—0.

Moreover if

then
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Proof. We proved (5.6) for f = ¢ € S(R). Since m(&)

—isgn (£) is

bounded, H uniquely extends to a translation invariant operator H € M??2
and (5.6) follows from the Plancherel theorem. Another application of the

Plancherel theorem gives

IH flla = 1HFll2 = || —isen () F ()l = 1Fll2 = |1 £]]2

Moreover )
Hf = ((~isgn(9)*f(9)" = ~1,

so H?> = —I and hence H~! = —H. Finally if
HE f(2) :1/ f) dy =1

T Jlz—y|2e ¥ —Y g

where
1 2
9:(¥) = — X{laze) € L
formulas (5.4) and (5.5) give
|g=(€)] < M independently of &

and

G:(&) — —misgn (§) ase — 0 forall £ €R.

Hence

(HeF)"(€) = = f(€)3=(€) — —isgn (€)F(€)

3=

as € — 0 and
D )] < Zife).
Thus the dominated convergence theorem yields
(Hgf)A — —isgn (6)f(€) inL2ase—0
and hence
Hf = (—isgn(9)f(€) = Hf inL?
as € — 0 by Plancherel’s theorem.

(ga*f)(l‘),

|

5.1. Conjugate harmonic functions. We will see now that the Hilbert
transform arises naturally in connection with boundary behavior of holo-

morphic functions.

Let us recall that the Poisson kernel

t
Fy(x) = P(z,t) = (2 1 |2[2)n+D/2

reR” t>0.

The function P(x,t) is harmonic in Rﬁ“. One can check it by a direct
computation, but it is worth to note that this also follows the fact that for

n > 2

¢, O 1
P(.’E,t) = _TL 1 & <(t2 + |$|2)(n1)/2>
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and
1

(2 + |z[2) (D72 = I(

is the standard radial harmonic function in R"*!\ {0}.%° Similar argument
works also for n = 1.

t,.%')”2_(n+1)

If feLP(R"), 1< p < oo, then the Poisson integral
u(z,t) = / Pz —y,t)f(y)dy = P, % f(x)

is harmonic in RZ‘F‘H. Indeed, it is easy to see that we can differentiate u
under the sign of the integral and hence harmonicity of u follows from that
of P(x,t).

Note that (2.7) and Theorem 2.28 imply that
(5.7) u(,t) = f()

both in LP(R™) and a.e. as t — 0F. Thus the convolution with the Poisson
kernel solves the following Dirichlet problem.

A(m)u(x, t) =0 in Ri—H,

u(a;,O) = f(x)v
where the boundary condition u(x,0) = f(x) is understood in the sense of
the limit (5.7).
Now let us restrict to the case n =1, so

1y

Py(ﬂf):P(%y):;yg_'_an

reR, y>0,

where for convenience reasons we use variable y instead of t. Thus for a real
valued function f € LP(R), 1 < p < oo,

o) = (Fep)0) =Y [" I

is a solution to a corresponding Dirichlet problem in the upper half-plane
R2 = {(z,9) : y > O}.

Every harmonic function in ]Ri is a real part of a holomorphic one. Clearly

the function e
F(z) = Z/ f®) dt
7T —o0

z—1
is holomorphic in R = {imz > 0} and*
re F\(z) = u(z,y) .

25Up to a constant it is the fundamental solution to the Laplace operator A.
268ince re (i/(z — t)) = y/((x — t)2 + ?).
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Also < @i
. x_
im F(z) = W/_oo(x—t)wdt_ (f % Qy)(x),
where 1
Qy(z) = ;W

is called the comjugate Poisson kernel.

The functions

w(x +iy) = (f=Py)(x),  v(z+iy) = (f*Qy)(x)
are conjugate harmonic functions in Ri since they are real and imaginary
parts of the holomorphic function F(z). We know that

u(y) = f() asy—0F
both in LP and a.e. and it is natural to ask what is the limit of v(z,y) =
(f *Qy)(z) as y — 0F7

Formally
) 1
yli}g* Qy (33) N %

so it should not be surprising that the limit of f * @, as y — 07 equals to
the Hilbert transform H f.

Theorem 5.4. For f € LP(R), 1 < p < oo we have
[¥Q:—Hf—0 ase— 0"

both in LP(R) and a.e. More precisely f * Q.(x) — H® f(z) — 0 whenever z
is a Lebesgque point of f.

Proof. Note that

1 [ 1
FQue) = Hf@) = % [ e =00t =~ (F 5 2)(o).
where )
x
V() = 224 &2 - ;X{|z|2€} .
Note also that if
1
Y(r) = 1(z) = xgi_i_l — X{jal>1} -
then . (r) = e 1¢(x/¢). The function
1
Yo =

is an integrable radially decreasing majorant of ¢, i.e. [¢| < |¥] and [ =
0. Hence Theorem 2.28 with a = 0 implies that

f*Q:—Hf -0 ae.
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The convergence to 0 in LP follows from Corollary 2.12. O

If p € S(R), then H¢p — H everywhere by Theorem 5.1. Since every
point of ¢ is Lebesgue, Theorem 5.4 gives

Corollary 5.5. If p € S(R), then
©0*Qc(x) = Hp(z) ase— 0T
for every x € R.

Since for f € L?, H°f — Hf in L? we immediately get
Corollary 5.6. If f € L?(R), then
fxQ. — Hf inL? ase— 0F.

Later we will see that H*f — H f both in L? and a.e. for any f € LP,
1 < p < oo and hence the corollary extends to 1 < p < oo. This will show
that if f € LP(R), 1 < p < oo is the boundary value of the real part of the
holomorphic function F' in Ri, then the boundary value of the imaginary
part is Hf € LP.

5.2. LP estimates. The boundedness of the Hilbert transform in LP, 1 <
p < oo plays a fundamental role in harmonic analysis and its applications.
In this section we will show two different proofs of this result and in one of
the following sections we will provide one more proof. The Hilbert transform
is the simplest example of a singular integral and the result is a special case
of L? estimates for singular integrals that will be discussed in later sections.

Theorem 5.7 (Riesz). If 1 < p < oo, then there is a constant C(p) > 0
such that for all ¢ € S(R)

1Hellp < C)llellp-

Moreover C(p) = C(p') and C(2) = 1. Thus H € MP? for all 1 < p < o0
and hence m(&) = sgn (§) € M,(R).

Proof. We proved the result for p = 2 with C'(2) = 1 in Theorem 5.3. Since
T € MP? if and only if T € MP'? with ||T|| s = ||T| g (Theorem 4.6)
is suffices to prove the result for 2 < p < oco.

We will need the following lemmas which are of independent interest.

Lemma 5.8. Ifu € CY(Q), Q CR" and 1 < p < oo, then |ulP € C*(Q) and
Vl|ulP = plulP~2uVu. In particular V|ulP(x) = 0 if u(x) = 0.

Proof. Clearly |ulP is C! on the open set where u # 0 and the formula
for V|ulP is easy to verify on that set. Thus it remains to prove that |ulP is
differentiable on the set where v = 0 with V|u[P = 0 on that set. We leave
details as an exercise. ]



84 PIOTR HAJLASZ

Now if p > 2 and u € C?(Q), then |u|P € C?(Q). Indeed,
p—lﬁ
Bxl- '

5 Ou
[ul? = plulP~*uz—= = psgn (u)u]
3

aTi
The lemma gives [u[P~10u/0z; € C* and
0 ou
- pfli — f =
iy (\u| 8332-) 0 ifu(x)=0,
so it is easy to see that
ou

9 o ou
0 . p_ 9 p—1 _ . p—1-7
axjaxl |ul o, (psgn (u)|ul 8:@) psgn (u)ﬁx <\u| 81:1')

J
and hence the second derivatives of |ulP are continuous. In particular if
u € C?(2) and p > 2 we can compute A|u|P. Easy calculations give

Lemma 5.9. If u € C%(Q), Q CR"™ and p > 2, then |u|? € C*(Q) and
Alul? = plu[P~? (uAu + (p — 1)|Vul?) .

Using a variant of the above argument combined with the Cauchy-
Riemann equations one can easily prove

Lemma 5.10. If F(z) = u + v is holomorphic in Q C C and p > 2, then
|F|P € C*(Q) and
A[FIP = p|FIP~ (uf + uj) .

Now we can return to the proof of the theorem. By density of C§°(R) in
S(R) it suffices to assume that ¢ € C§°(R). This assumption will simplify

some estimates. Let . o "

T ) _o?2—1

Then as we have seen in Section 5.1

re F(z) = u(z,y) = (¢ * Py)(z) mF(z) = v(z,y) = (¢ * Qy)(2),

where
1 Y 1 x

Py(z) = P ma Qy(x) =

T 24y’
Moreover

v(z,y) = (pxQy)(z) = Hp(z) asy— 0"
for every x € R, see Corollary 5.5.

Since v is harmonic Lemma 5.9 gives
AloP = p(p — D[P~ (v + vy) = p(p — DI~ (w3 +y5)

where in the last equality follows from the Cauchy-Riemann equations. This
and Lemma 5.10 imply

p .2 -2 -2 (.2 2
65 A(IFP = oP) = OFP2 - 0 + ) 2 0.
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Let us recall that if f € C'(Q), where Q C R? is a bounded domain with
piecewise smooth boundary and 7 is the outer normal vector to the bound-
ary, then

O 45 — ids =
(5.9) ds = (me fids //QAfdxdy.

oq 01
This formula is known as Green’s identity. We want to apply it to the func-
tion

p
f=1FP - L pop

and  as on the picture.

Sy

('R:‘}) { ’ﬂ’ Cgl:])

>
o

The integral of Vf - 7i along the boundary is nonnegative by (5.9) and
(5.8). Elementary but tedious estimates?” show that the part of the integral
corresponding to the semi-circle converges to 0 as R — oco. Thus for every
y > 0 we obtain?®

oo
o=

—o
Hence the function

10 = [~ (Il = 25 )l ) da

—0o0

(5.10) (1P P = 2 etep) do <o

is decreasing. The same estimates imply also that I(y) — 0 as y — o0, so
I(y) > 0 for all y > 0 and thus

| ir@apdsz 2o [ ey de.

27Gince i has compact support, the integral formulas that define u and v show that the
growth of u, v, Vu, Vo can be estimated by C/(z*+y*)"/? and hence | f| < C/(z? +y>)?/?,
VS| < C/(a® +y*)P2.

28Note that 9/dy = —0/0f along this line.
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Observe that

0o 2/p
(/ |F(z,y)[P dz) = ([, )07 ()2 < NP ) 2102 G w) g2 -

Hence
p 2/ 2 2 2
(525) 120l < PGl + 12l
2 1 2
(5.11) [V 9)lyz < 2l

()" -

Note that u(-,y) = p*Py — @ in LP asy — 07 by (2.7) and v(z,y) — Hep(x)
for every x € R. Thus letting y — 01 in (5.11) and applying Fatou’s lemma
we obtain

/°° [Hop(z)|P do < ! /oo lo(z)[P dz .

B () )"

The proof is complete. o

Now we will present another proof of Theorem 5.7 based on the following
interesting identity.

Lemma 5.11 (Cotlar). If ¢ € S(R) is a real valued function, then
H(p)? = ¢ + 2H(pH (p))

Proof. Before we give a rigorous proof we will show a heuristic argument
that leads to this identity. As we have already seen, the function ¢ + iH (¢)
has a holomorphic extension to the upper half-plane. Namely

F(z) = 7;/00 o) g

™ z—1

—0o0
Hence also the function

(p+iH(p))? = 9 — H(p)? +i2pH (p)
has a holomorphic extension F(z)2. Thus we may expect that’

20H () = H(¢* — H(p)?)
Applying H to both sides and using the fact that H? = —I we get

2H(pH(p)) = —¢> + H(p)?

29This, however, would require a proof. The function ¢? — H(tp)2 does not belong to
S(R) in general and we proved that the boundary value of the imaginary part is the Hilbert
transform of the boundary value of the real part only in a specific situation when the real
part is in S(R) and the extension is defined by the integral F'(z). We will not clarify this
issue now as we will present in a moment a different, rigorous, proof based on the Fourier
transform.
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which implies the claim.

Now we present a different and rigorous proof. Let m(§) = —isgn (§) be
the symbol of the Hilbert transform. We have3°

P2(€) + 2[H(H()](€) = (¢ $)(&) + 2m()(¢ + H) ()

o0

-/ T HOB(E — Q) dC + 2m(e) | etcrete—amie -y = .

—00 —00

Since

| et0ste - omie - cac - / —O@(O)m(Q) de

—00

we have

2m(€) /_ BO)P(E — OmlE — C)dc
/ —Q)(ml€) + m(E — ) dc

and hence
9= [ p0#E = 01+ m(E)m(O) +mis ~ ) = 9

Since m(§) = —isgn (§) one easily verifies that

L+ m(&)(m(C) +m(§ — () = m(¢)m(¢ —¢)

everywhere except £ = ( = 0 and hence

o = /Oo HOB(E — Om(Q)mlE - ¢) de

- /_ T Hole - OHp(C) de

= (He=Hy)(©)
A
= (H(9)*)"(©).
Taking the inverse Fourier transform yields the result. O

Proof of Theorem 5.7. First observe that it suffices to prove the inequality

(5.12) 1H ellp, < Cr)llllp

for p = p, = 2%, k = 1,2,3,... Indeed, this and the duality argument
(Theorem 4.6) will imply that

[1Helly < Clon)llelly

30In the arguments below we use Plancherel’s theorem many times, because all func-
tions for which we compute Hilbert’s transform, Fourier’s transform and convolution are
in L? and not always in S(R).
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and hence the Riesz-Thorin theorem will yield

1Hell, < C)lellp

for all pj, < p < pg. Since p; can be arbitrarily large, boundedness of the
Hilbert transform in LP for all 1 < p < oo will follow.

We already proved (5.12) for ¥ = 1 with C(p) = 1 in Theorem 5.3.
Suppose now that we established the inequality for p = p, and we will show
how to deduce the inequality for 2p = pgiq. For 0 # ¢ € S(R) Cotlar’s
identity yields

IHollsy = [I(Hp)(Y?
< (1€l + I2H(H (9))],) "
< (I¢l3, + 20 leH @) "
< (lel3, + 2Cm) lpllzpll Hopllzp) 2

and hence

H 2 H
(H 90H2p> _20(p) [Hell2p 1<1.
lell2p lell2p

This is a quadratic inequality which immediately yields

15l - oo+ ERPTT

lellop
and hence (5.12) for pgy1 = 2p follows with

C(pry1) = C(pr) + VC(pr)2 + 1.

The proof is complete. o

Remark. The proof gives also good estimates for the norm of the Hilbert
transform in LP.

5.3. LP multipliers. Theorem 5.7 implies that m(§) = —isgn (&) is an LP
multiplier m € M,(R), 1 < p < co. Hence also
X[0,00)(§) = (L +isgn (§))/2 € Mp(R).

Since translations, reflections and product of multipliers is a multiplier we
conclude that

X[ap] € Mp(R).
One dimensional multipliers generate n-dimensional ones. Indeed, if m €

M,(R) and
(5.13) m(&1, .. 8n) =m(&),

the operator

ng@(x) - (Tm@(l’l, ey Li—1 5 L1y - - ’xn))(l'z)
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is bounded in LP. This easily follows from the Fubini theorem

[ et ds
]Rn
= /RL1 </R |(Tmcp(as1, ety ,a:n))(xi)]p d:cl-> dry...dx;—1dziy1 ... dxy,

IN

C (/ go]pdx,) d(L‘l ...da;i_l Cl.’L'Z'+1...Cl.’L'n.
Rn-1 \JR
Thus m € Mp,(R").
Corollary 5.12. If my,...,m, € My(R), then
m(§17 o 7571) — m1<£1) s mn(gn) € MP(Rn) .

Proof. Indeed, m is a product of multipliers of the form (5.13). O

Since X[o,00) € Mp(R™), the characteristic function of the half-space R
belongs to M,,(R™). Rotations, translations and product of such character-
istic functions is also an LP multiplier and hence we have.

Theorem 5.13. The characteristic function of any convexr polyhedron in

R™ is an LP multiplier for 1 < p < oo.

5.4. Pointwise convergence. We will prove that H*f — Hf a.e. for f €
LP(R), 1 < p < oco. In this section we will treat the case 1 < p < co as the
case p = 1 requires a different argument and will be discussed later.

DEFINITION. The maximal Hilbert transform is the operator
H* f(x) = sup |(H*f)(x)|
e>0
defined for all f € LP(R), 1 < p < o0.

Lemma 5.14. For f € LP(R), 1 < p < o0 and all z € R we have
(5.14) (f * Qe)(x) = (H(f) * Pe)(x) -

Proof. Tt suffices to prove the equality for f = ¢ € S(R). Indeed, if
f e LPand ¢, € S(R), o, — fin LP, then H(px) — H(f) in LP and hence
0r*Qe(x) = fxQ:(x), H(pr)*P:(x) — H(f)*P-(x) because of the fact that
P.,Q. € L” and the Hélder inequality. Moreover since Q. (z) = e~ 'Q(z/¢)
and P.(r) = e 1P (z/e) it suffices to prove the equality for e = 1.

Taking the Fourier transform of (5.14) for with f = ¢ € S(R) and e = 1
we see that it is equivalent to>!

P(E)Q1(€) = —isgn (€)p(&)e 2kl

31gee Corollary 2.24.
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Observe that this identity follows from

v
(5.15) <—isgn(-)e_2”"|> () =
The proof of (5.15) goes as follows

<—Z sgn (.)6*27r|-\)v (x) _ /oo san (5)67277\§|€27rix§ d€

—00

[o¢]
= —i/ (6_2”5827rm5 - 6_2”56%96(_5)) dg§
0

i x
T2 +1°

= 2/00O e~ 2™ sin(2nx€) dé

I

 oma?4+1’
where the last equality follows from the twice integration by parts. O
Lemma 5.15 (Cotlar). If f € LP(R), 1 < p < oo, then for all x € R we

have

[H" f ()] < Mf(x) + M(Hf)(z).

Proof. Following notation from the proof of Theorem 5.4 we have

F* Qul) = H () = ~(f #42)(a)
and the function .
v =

is an integrable radially decreasing majorant of . Hence Theorem 3.12
yields

1% Qule) — HEf ()] < ~ WM (2) = M (2)
Another application of the same theorem combined with Lemma 5.14 gives
SUp |+ Q< ()] = sup [H (f)  Pe(2)| < [ Ak M(Hf)(@) = M(Hf)(@).
Thus
[ f(z)] < sup|f * Qe(x)| + Mf(z) < MIH[)(@) + Mf(z).
The proof is complete. O

Corollary 5.16. The operator H* is of strong type (p,p) for all1 < p < oo,
i.e. for f € LP(R)
IH" fllp < Cpll fllp-

Proof. 1t follows immediately from Lemma 5.15, boundedness of the
Hilbert transform in LP (Theorem 5.7) and boundedness of the maximal
function in LP (Theorem 3.10). O
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Corollary 5.17. For f € LP(R), 1 <p < oo, H°f — Hf ase — 0 both in
LP and a.e.

Remark. Compare the proof with that of Theorem 1.2.

Proof. If ¢ € S(R), then H*p — H everywhere. Since
|H*¢ — Ho| < H*o + |Hyp| € LP
we conclude that
(5.16) H*p — Hy in LP.

Now we will prove that for f € LP, H® f converges a.e. to some measurable
function g. To this end it suffices to show that

(5.17) Qf(z) =0 ae.
where
Qf(x) =limsup H* f(x) — liminf H® f(x).
=0 =0
Note that
0<Qf(z) <2H"f(x)
and hence

2 c
: d wep <« © p
o 0@ >l < g [ir<g [
To prove (5.17) it suffices to show that for any ¢ > 0
(5.18) Hz: Qf(z) >t} =0.

Given any v > 0 let ¢ € S(R) be such that || f — ¢||, < ~t. It is easy to see
that

Qf <Qf =) + Qo =Q(f — ),

where the last equality follows from the fact that H*p — Hy everywhere.
Thus

c
o: @) > 8 <o A - Q)@ >0 < 5 [ 1F el <.
It is true for any v > 0, so (5.18) and hence (5.17) follows. Since |H® f| < H* f
and H°f — g a.e. we conclude that |g| < H*f a.e. Now
|H°f —g| <2H"felL?

and the dominated convergence theorem yields H¢f — ¢ in LP. It remains
to prove that g = Hf a.e.

Given v > 0 let ¢ € S(R) be such that || f — ¢||, < v and let € > 0 be
such that

|Ho — H¢ll, <~ (see (5.16))
NHf —gllp <.
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We have

IHf —gly < IH(f —o)llp+ [1He = Hopllp + [H(f — )llp + [[H f = gllp
< Clf —ellp+y+1H(f —o)llp+7 < Cy
and hence g = Hf a.e. O
The proofs of Theorem 1.2 and Corollary 5.17 are based on the same
method. Not surprisingly, the same argument appears in other similar situ-
ations, so it is wise to present it in a form of an abstract and general result

which will allow us to apply the result directly and avoid repeating the same
argument over and over again.

Theorem 5.18. Let (X, ) be a measure space and let {T;}i~0 be a family
of linear operators from LP(u), 1 < p < oo into the space of measurable
functions on X. Suppose that the limit

(5.19) lim 7, (2)

exists a.e. for all functions f in a dense subset A C LP(u). Define the
mazximal operator associated with the family {T;} by

T* f(x) = sup T3 f(x)|.
>0
If T* is of weak type (p,q), 1 < q < oo, then the limit (5.19) exists a.e. for
all f € LP(u). Denote the limit by
T = lim T; .e.
f#)=m T (z) ae
for all f € LP(u). If in addition T* is of strong type (p,q), then T is of
strong type (p,q) and
Tif =Tf inLi(p) ast—0
for all f € LP(p).
Proof. We can assume that the functions are real valued as otherwise we
can consider the real and imaginary parts separately. Suppose T is of weak
type (p,q). We will prove now the first part of the theorem which says that

T f converges a.e. as t — 0 for all f € LP(u). To this end it suffices to show
that Qf = 0 a.e., where

Qf(z) = limsup T, f(x) — liItniglthf(x) .
t—0 -
Note that 0 < Qf(x) < 27* f(x) and hence
o x: 050 > 0 < ()
: < ; .

For € > 0 let ¢ € A be such that || f — ¢, < €t. It is easy to see that
Q <QUf =) + Qo =Qf = 9),
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because ¢ = 0 a.e. since T;p converges a.e. as t — 0. Thus

(Qf > )] < (T —¢) > 1] < (Ctt) oy

Since it is true for any ¢ > 0 and € > 0 we conclude that Qf = 0 a.e. which
completes the proof of the first part of the theorem.

Suppose now that T™* is of strong type (p,q). Since |13 f| < T*f we con-
clude that |T'f| < T*f and hence
|Tif —Tf|<2T"f € L.

This inequality, the fact that T, f — T'f a.e. and the dominated convergence
theorem imply that T;f — T'f in LY. O

6. THE RIESZ TRANSFORMS

The Hilbert transform is, up to a constant, convolution with the principal
value of 1/2 = x/|z|>. Thus a natural generalization to the n-dimensional
case would be convolution with the principal value of z/|z|"*!. However,
x/|z|" ! is a vector valued function, so we should consider its components

z;/|z|" ! separately. For ¢ € S,, we define
2
Wile] = cnpov. /Rn MTJH¢(x) dx
= ¢p lim i o(z) dx,

e—0 |I‘Z€ |.’,TJ|TLJ'>:l

where ¢, =T (”TH) /m("+1D/2 Note that the constant is the same as the one
in the definition of the Poisson kernel.

Exercise. Prove that the above limit exists for any ¢ € S,, and that W; € SJ,.
DEFINITION. For 1 < j < n the Riesz transform of a function f is defined
by

(Rif)(z) = (W;x*[f)(z)

Yj
= c p.v./ —=— f(x —y)dy
" e [y

. T — Y
= ¢, lim ]771]“
=0 Jiz—y|>e |$ - y|

fly)dy.

The Riesz transform is well defined for ¢ € §,, and the question is how to
extend it to LP(R™), 1 < p < oo.

The following results generalizes Theorem 5.2.

Theorem 6.1. ¢
W;(§) = —i é :
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Proof. For ¢ € §,, we have

Wilg] = W;lg] = lime, /£ 0 ‘ffjﬂ e

e—0

| | - 3
= lim cn/ </ z)e meédac) I d¢
€20 " Jeglgj<et \JRn #le) €|+t

= i - —2miz-€ gj d dr =
81—I>I(1)C /n @(x)</€‘<£|<€—le ’é“n—i_l §> r=

I
Expressing the integral I is spherical coordinates we have

—1

) n—1 —2miz-(s6 st
I:/E s (/Snl ()nildﬁ)ds
ds

/ (cos(2msz - §) — isin(2wsx - 0))6; do(0) —
S" 1 S

Il
\

sin(27sz - 0)0; do(6) %

|
@

Sn—1

)
= Z/S” 1 (/ sin QWS‘x o) ds ) sgn (z - 0)0; do(0)

27|x-0le™t
= z/ / Sl—nt dt) sgn (z - 0)0; do(0) .
Sn—1 2m|x-0le

0= [ ) <—icn72r /S s (-0, d0(9)> i

Indeed, we could pass to the limit under the sign of the integral using the
dominated convergence theorem and we employed the equality

t
/ sin g —
0 t 2

Thus it remains to prove that

Thus

(6.1) cn”/ sgn (z - 0)0; do(0) = —2 .
2 Sn—l |CC|
We will need the following result.

Lemma 6.2. If m : R™ — R" is a measurable function that is homogeneous
of degree 0, i.e. m(tx) = m(x) fort >0, and commutes with the orthogonal
transformations, i.e.

(6.2) m(p(z)) = p(m(z))
for all x € R™ and p € O(n), then there is a constant ¢ such that
(6.3) m(z) = ¢z for all x # 0.

]
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Before we will prove the lemma we show how to use it to establish (6.1).
it is obvious that the function m : R® — R" defined as

m(x) = /S"l sgn (z - 0)0do(6)

is homogeneous of degree 0. It also commutes with orthogonal transforma-
tions since

mipla) = [ san(ola)-0)0do(0)
= [ s 0)0do(0)

(64 = [ sen(a-0)p(6) da(0)
(6.5) - p( /S nlsgn(m-&)ﬂdo(@))

(6.6) — p(m(x)).

Note that (6.5) follows from the fact that p induces a volume preserving
change of variables on S™"~!, while (6.6) is a direct consequence of linearity
of p. thus the lemma yields

/ sgn(z-0)0do(0) = c ha
Sn—1 ||
and hence looking at the jth component we have
(6.7) / sen (2 - 0)0; do(6) = ¢ 1.
Sn—1 ||
now it remains to prove that
< 7'() -1 27T(n_1)/2 2
C=\Cph = = S ariN Wn—1 -
2 L (%)

Taking = e; in (6.7) we have

/ 6] do(6) = c.
Snfl

The unit ball B® ! in coordinates perpendicular to x; split the sphere Sn—1
into two half spheres S7~!. Thus

C_Q/S 6, do (9).

n—1
+



96 PIOTR HAJLASZ

Bn—-l

Recall that if M C R™ is a graph of a C! function f: Q — R, Q c R* 1,
then for a measurable function g on M we have

| gdo= [ o f@)VTF NI @Pds.

M Q

In our situation we parametrize Si_l as a graph of the function
flz)=+/1—|z|2, zeB" .

Form the picture

|f )= slope = tana,

n-l

S4

we conclude

/S 0, do(0) — /Snl(l—h)da(ﬁ):/ (1= V1 + tan? a de

n—1 n—1
+ + B

= / 1 dr = wp_1,
Bn—

1 1
V1+tan?a =

cosa 1-nh
and the result follows. Thus we are left with the proof of the lemma.

because
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Proof of Lemma 6.2. Let eq1,es,...,e, be the standard orthogonal basis
of R™. If [pj] is the matrix representation of p € O(n), then the condition
(6.2) reads as

(6.5) mi(p(@)) = 3 pgma(a), G =1,2,...m,
k=1
where m(z) = (mq(x),...,my(x)).

Let mi(e1) = c. Consider all p € O(n) such that p(e;) = e;. This condition
means that the first column of the matrix [p;x] equals ey, i.e. p11 =1, pj1 =0,
for j > 1. Since columns are orthogonal, for k£ > 1 we have

n
0= ijlpjk = Pk -

j=1
Thus
1 0 ... O
0 p2 ... pon
P = . . . . s
0 pn2 - Pun

where [pjk]};_o is the matric of an arbitrary orthogonal transformation in
the (n — 1)-dimensional subspace orthogonal to e;.

For x = e; = p(e1) = p(z) and j > 2 identity (6.8) yields

n n
mjer) =Y pikmrler) = > pjgmaler)
k=1 k=2

and hence
ma(e1) p22 ... P2n ma(er)
mp(e1) Pn2 -+ Pnn mp(e1)
That means the vector [ma(ey),...,my(e1)]” is fixed under an arbitrary

orthogonal transformation of R*~!, so it must be a zero vector, i.e.
ma(er) =...=my(e1) =0.
Now formula (6.8) for any p € O(n) and = = e, takes the form
mj(p(e1)) = pjima(er) = cpji.

By homogeneity it suffices to prove (6.3) for |z| = 1. Let p € O(n) be such
that p(e1) = «. Then pj1 =z, j =1,2,...,n and hence

mj(z) = cpj1 = cxj =c—.

This completes the proof of the lemma and hance that of Theorem 6.1. O
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Corollary 6.3. For p € S, and1 < j<n
i€ .\
(Rjp)(x) = T @€)) (x).
Since the function m(¢) = —i€;/|¢| is bounded, R; € M?? and
IR flla < ||fll2 for f e L*(R™).

Moreover since the Riesz transform is a convolution with a tempered dis-
tribution, for every ¢ € S, Rjp € C is slowly increasing and all its
derivatives are slowly increasing.

Corollary 6.4. The Riesz transforms satisfy

ZR? =—I on L*(R").
j=1

Proof. Applying the previous corollary and the Plancherel theorem, for
f € L? we have

n A n e\ 2 R .
(SN ©-X(-) fo--io

Jj=1 j=1
which yields the claim. O

An amazing property of the Riesz transforms is that they allow to compute
mixed partial derivatives 9;0,u is we only know Aw. More precisely we have

Proposition 6.5. If p € S, then for 1 < j, k < n we have

Iy
3$j 81‘k

= —RjRAp(x).

Proof. For ¢ € S, we have
(050kp)" (&) = (2mi&;)(2mi&k) P(€)
k

- ~(58) () o

- () () 5o
= (=RjRrAp)"(€)

and the result follows by taking the inverse Fourier transform in L2 O

It is quite convincing the the above argument applied to v € S, such that
Au = f € L?, gives 0;0ru = —R; Ry, f. However this is not true. For example
if u = xy, then as a slowly increasing function u € S5. Clearly Au=0= f,
but 0,0,u =1# 0= —R;R,f. In general we have
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Theorem 6.6. If u € S), satisfies

(6.9) Au = f € L*R"),
then for any 1 < j,k <mn
0%u
2T P P;
Da 0 RjRyf + Pj,

where Pjy is a polynomial.

Proof. Taking the Fourier transform of (6.9) we have

sl = ]
Hence if A € C°°(R"™) and all its derivatives are slowly increasing, then
(6.10) —MO(—4m(¢)i = —A(€) S -

According to Corollary 2.51 it suffices to prove that the tempered distribu-
tion
0%u :
R;R
<6£L'] Oxy, * kf)

has support contained in {0}. Let ¢ € S, be such that 0 & supp ¢, say
o(x) =0 for |z| < r. We need to show that

(9;0ku)" ¢ = (= Rj Ry f) "] -
Let n € C*°(R™) be such that n(z) = 0 for |z| < r/2 and n(z) = 1 for
|z| > 7. The function n and its derivatives are slowly increasing and n¢ = ¢.
Hence

;00w ] = ((2mi&)(2mi&;)a) [ny]
= (n(&)(2mi&;)(2mig;)a) [np] = ©
Observe that

(€)(zrie) 2riey) =~ (o) é) (FeE) (-amiep)

A(©)

and A € C* and its derivatives are slowly increasing, since 1 vanishes in a
neighborhood of & = 0. Thus

O — (_/\(g)A—47r2\§|2)7l)[]
= (=A&f(&)
= (-n© Z@) &) 70) 1

; ((R‘R 2 (28) j@) 1o

|
kf)A[w] .

The proof is complete. O
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Roughly speaking, one dimensional directional sections of the kernel of the
Riesz transform defines one dimensional Hilbert transforms and it is possible
to use this fact to prove boundedness of R; in L? by a so called method of
rotations. Since the same method works for a larger class of operators we
postpone the proof of the boundedness of R; in L? to the next section where
a more general result will be proved.

6.1. Homogeneous distributions. In this section we will present a dif-
ferent and shorter proof of Theorem 6.1.

Recall that a function f is homogeneous of degree a if for all 0 # z € R"”
and ¢t >0

[f(tx) =t f ().
For such a function and ¢ € S, we have
A f(x)pr(x) de =t* A f(x)p(x) dx,
where ¢ (x) =t "p(z). This suggests the following definition.

DEFINITION. We say that a distribution u € S), is homogeneous of degree a
if for any ¢ € S,

ulpr] = tulp] .

Proposition 6.7. If u € 8’ is homogeneous of degree a, then 4 is homoge-
neous of degree —n — a.

Proof. Recall that for ¢ € S, we have
@i(§) = ¢(t§) and  (P)i—1 = t"P(t8),

SO
Gr(&§) =t7"(8)e-1(8) -
Thus
iled] = ul@d] =t ul(p)—1] = 7" Mul@] = £ aly] -
The proof is complete. O

As an application of this result we will prove the following

Proposition 6.8. Forn/2 <a <n

NJ\:X

¢

(12 )" () = F(()) e

—~

Proof. Observe that |z|=% € L' + L2. Indeed,
"X (zi<1y € L' and [z xqpups1y € L,

so the Fourier transform of |x|~% is function in Co+ L2. Since |z| =% is radially
symmetric, the fact that the Fourier transform commutes with rotations
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implies that its Fourier transform is radially symmetric too. Lastly, |x|~*
is homogeneous of degree —a, so Proposition 6.7 implies that the Fourier
transform is homogeneous of degree —n + a. Thus

(12]7%)" (&) = canl€]*™

and it remains to compute the coefficient ¢, ,. Employing the fact that

—mlzf?

e is a fixed point of the Fourier transform we have

(6.11) / e_”$|2|x\_“d:p:ca’n/ e_”|$|2\:n|a_”dm.
n R

The integrals in this identity are easy to compute. Indeed, for v > —n we
have

o0
_ 2 _ _ _ 2
e Tl |z|Vde = s 1S He T Y ds
n 0
o0 2
= nwn/ e T g g
0

o
t=ms? nw o onty
= o / etz Lt
0

o'
— nwn F<n+fy>_ F(HTH)
T o Uz )T Ay
Applying this formula to both sides of (6.11) we have
r(s) ()
ST
and hence )
a—% 2
T T()
The proof is complete. O

The distribution W; arises naturally as an attempt to differentiate the
function 1/|z|"~!. Namely we have

Proposition 6.9. If n > 2, then |z|'™" € S/, and its distributional partial
derivatives satisfy

Lj

(glel'™) bl = =)o iy

Before we prove the proposition let us recall the integration by parts
formula for functions defined in a domain in R™. If 2 C R" is a bounded
domain with piecewise C' boundary and f,g € C*(Q), then

(6.12) /Q (VI(@)g(z) + f(@)Vga)de = | fordo,
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where 7 = (v1,...,1,) is the unit outer normal vector to 9. Comparing
jth components on both sides of (6.12) we have

(6.13) /8% /f 89 d:c+/ fgvjdo.

Proof of Proposition 6.9. Let A(e, R) = {x : ¢ < || < R}. We have

0 1-n _ 1-n
(gl )t == [ Ztelao

= lim | lim —/ O¢ |lz|1 " da
e—0 \ R—oo <|z|<R 8.73]

= lim ( I = d yid
tim ((lim ( /E<|x|<R%0<x> g ol dot /M@R)WW vjdo))

N——
(1=n)z; /|1

x
= lim 1—n/ ]—i—/ z)|z' " v do
tig ((=n) | o) s+ [ elolel v do)

Indeed, we could pass to the limit with R — oo, because the part of the
second integral corresponding to the integration over {|z| = R} clearly con-
verges to zero. Since the integral of the function |z|'~"v; over the sphere
|x| = € equals zero we have

/| | o(z)|z|' " vjdo = /| ‘ (p(z) — p(O)|z|' " v;jdo =0 ase—0,
Tr|=€ T|=¢€

because
| (o(z) — (0)) || " vy| < Ce™,
and the result follows. O

Proof of Theorem 6.1. Applying Proposition 6.9 and then Proposition 6.8

we have
A
p.v. U = ! 0 |2z '
||l 1—n \dz;
 1-n (]x\ )
) nf(nfl))

27TZ§j 7Tnflf% T ( 2 ’6‘71

— n—1
1-n r (251

WHTH —1§;

r(e) Kl

Where we used facts that

0(1/2) =72 and ”_1F<”_1):r(”+1>.

2 2



HARMONIC ANALYSIS 103

The proof is complete. o

6.2. The Bochner-Hecke formula. Now we will generalize Theorem 6.1.
The distribution W; is, up to a constant, the principal value of z;/|z|"*1.
The function x; is harmonic and thus Theorem 6.1 follows also from a more
general formula for the Fourier transform of

Py ()
p.v. W 5

where Py(x) is a homogeneous harmonic polynomial of degree k > 1.

DEFINITION. We say that Py(z) is a homogeneous harmonic polynomial of
degree k if

Pi(x) = Z aer® and AP, =0.

Let us start with a general observation. For Q € L'(S"~!) with

. Q0)do(0) =
(614 [ 2ds@) =0
we define

= W) .

As in the case of the Riesz transform Kq ¢ L', so in order to define Kgq
as a tempered distribution we need to consider the principal value of the
integral. For ¢ € S,, we define

Wale] = p.v. o Kq(z)p(x) dx
= liII(l) Kq(x)p(z) dz
£=0 Jjg)>e
= lim Kq(z)p(z)dz

e—0 e<|z|<e1

As in the case of Theorem 5.1 one can prove that for ¢ € S, the limit exists
and defines Wy € S),. Note that the condition (6.14) plays an essential role
in the proof.

If Py is a homogeneous harmonic polynomial of degree k > 1 we can write

Py(z) _ Po(@)|z[* _ Pe(@/lz]) _ Qz/l2))

R | x|

where the function Q(x) = Py (x)|z|~* satisfies

(6.15) L 80 de0) = [ Po)as(o) 0.
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Indeed, if v is an outward normal vector to the unit sphere, then

or, d k1 _
5 =@ t:1Pk(m) =kt Pk(a:)‘ = kPy(z)

and hence Green’s formula yields

P
k[ Pu0)do(6) = / Pk 0ydo(0) = [ APedz=0.
Snfl Snfl BV Bn

Thus
Py(z)
W =p.v. d

is a well defined tempered distribution.

Our aim is to prove the following result.

Theorem 6.10. If P. is a homogeneous harmonic polynomial of degree

k> 1, then
Pu@)\" . P

wh676

L ()

Note that this result immediately implies Theorem 6.1.

Y = (1)

Let us start with an alternative proof of the following fact (see Theo-
rem 2.14).

A
Proposition 6.11. (e’”2> (&) =e ™,

Proof. The function e~ is holomorphic and hence its integral along the
following curve equals zero.

g

N\

A
\
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Letting R — oo we obtain

/ T e gy = / et gy

The left hand side equals 1, so

o
1 :/ e~ 2wl omE? g

—00

Hence

2 & 2 . 2\ N
e—ﬂf :/ e e—27rzx§ dr = (e—ﬂa: ) ({) )

—00

The proof is complete. O

By the same argument involving the same contour integration, for any
polynomial P we have

(6.16) / P(av)e_”(’“”f)2 dx = / Pz — z'{)e_”2 dx .

—00 —0o0

If P is a polynomial in n variables, then (6.16) and the Fubini theorem yield
(6.17) / Pla)e S gy = / Pla— i€)eF g

Theorem 6.12 (Bochner-Hecke). If Py(x) is a homogeneous harmonic poly-
nomial of degree k, then

A
(PeO)e™) () = (=)t Py()e™eF
Proof. Applying the differential operator Py (D¢) to both sides of the iden-
tity
/ olol? —2miag g _ el
we see that

(6'18) / Pk<l‘)e_7r‘x|2€_2m¢'f — Q(g)e—ﬂﬁp

for some polynomial @ and it remains to prove that Q(§) = Pr(—i§). Mul-
tiplying both sides of (6.18) by e™€* and applying (6.17) we have

Q&) = /n Py(x)e ™25 @6 gy :/ Py(z —i&)e ™ dz .

n
We can write

Pp(z —n) = ZUQPa(Q?)
and then

/ Py(x — 77)(3*“"”5‘2 dx = Z n® Poé(a:)e*’r‘”|2 dz,
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so clearly the integral is a polynomial is . With this notation we obtain

Q&) = Y (ie)° / Pua)e" da

n
«

and hence
Qi) = Zg“/ _”|$|2 alﬂ::/HPIQ(:L‘—E)e_”x|2 dx .

Since P is a harmonic function it has the mean value property

[ PGst = ©)d(0) = 15" Pi=6).

Thus integration in polar coordinates gives

aery = [T ([ niso-gao)) e as
= Py(-€) /OO "N e ds
0
= P9 [ e a=p(g)

and hence Q(§) = Px(—i&). The proof is complete. ]

Using homogeneity of Py and the second part of Theorem 2.7(e) one can
easily deduce from the Bochner-Hecke formula the folloiwing result.

Corollary 6.13. If P is a homogeneous harmonic polynomial of degree k,
then for any t > 0 we have

(AO™) " () =t (- Rug)e ™

We leave details as an easy exercise.
We will deduce Theorem 6.10 from the following result.

Theorem 6.14. If Py is a homogeneous harmonic polynomial of order k

and 0 < a < n, then
Pi(z) \" . Pr(§)
<|I’|k+n—a> (5) = Yk« |§|k+a )

kta
Ve = (—i)Fm2 F(,E 2 )

“)

where

Remark. Note that the function

Py ()
’$|k+nfa
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is a tempered L! function, so it defines a tempered distribution without
necessity of taking the principal value of the integral.

Proof. For any t > 0 and ¢ € §,, Corollary 6.13 gives
Py(z)e ™ P p(2) dz = (—i)* | Pulz)e ™2 o(2) da .
R™ Rn
Now we multiply both sides by

k _
31, where B:¥>O

and integrate with respect to 0 < t < oco. Since
e 2
| e = (nlof?)Pr(s)
0
the integral on the left hand side will be equal to

7B n ’w‘k—&-n—a 7B . ‘k—i—n—a

Similarly

= 2fty—k—%,8—1 = 2, —tte g
/ eItk 5B gy :/ L s
0 0

_ (o]
s=rlaf*/t (7T|a:|2)_kJ2ra/ e=5s 51 s
0
a k
_ (w|x|2)—’“§r< ;0‘) .

Thus the integral on the right hand side equals

hta x
(6.20) (—i)krjk; ) /R ) ‘I; T,§+i o(z) dz.

Since integrals at (6.19) and (6.20) are equal one to another the theorem
follows. O

Proof of Theorem 6.10. For ¢ € S,, we take the identity
Py(z) Py ()
/Rn [z[Ftn—a ¢(x) dz = Via /R 2o p(z)dx
and let @ — 0. The right hand side converges to

Nk 2 F(E) Pk(x)
(=i)"m F(@) /Rn ofF o(x)dz .
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To compute the limit on the left hand side we observe that the integral of
Py.(x)|z|~*+7=®) on the unit ball equals zero, see (6.15) and hence

Pi(x)
Jo ez )

_ /| Pk(m)(@(z)—@(@))d%—i-/ D) o e

ol<t x|k

a0t Py(z) o~ . 7Pk($) () da
= /| (p(x) — p(0)) do + /| B(x)d

al<1 [z[Ftm >1 |z[ktn
Y R ICERE LS = EOT
- m jo|>e |];T"(32 He)do
= (p.v. éTéfi)A [] -
Comparing the above limits yields the result. O

6.3. How to differentiate functions. We plan to generalize Proposi-
tion 6.9 to a class of more general functions. Let’s start with the following
elementary result.

Theorem 6.15. Suppose that K € C'(R™\ {0}) is such that both K and
|IVK| have polynomial growth for |x| > 1 and there are constants C,a > 0

such that
C

K@) < s

for0<|z| <1,

VK (z)| <

for 0 < |z| < 1.

’x‘n—a

Then K € 8], and the distributions partial derwatives 0K /0xj, 1 < j < n,
coincide with pointwise derivatives, i.e. for p € Sy
oK Oy oK

o 9= [ K@) gl @de= [ @ et dr.

Proof. Let A(g) = {z: ¢ < |z| < e !}. From (6.13) we have

0K . d¢
g — lim — K(z) 22X
b = - [ K@
K
= lim / a—(az)gp(m)dw— K(z)p(x)vjdo(x) | .

=0 \ Je<lal<e—t 0% dA(e)

Since
0K oK

;13(1) e<lal<e1 %(Jﬂ) p(x) dz = o %j(fﬂ) o(z) da
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it remains to show that

lim K(z)p(x)vjdo =0.
e—0 dA(e)
The integral on the outer sphere |z| = 7! converges to 0 since K has

polynomial growth and ¢ rapidly converges to 0 as || — oo and on the
inner sphere |z| = ¢ we have

K(z)p(x)v;do

|x|=¢e

<—— "1 =Ce* -0 ase—0.

The proof is complete. O

An interesting problem is the case a = 0, i.e. when K and VK satisfy the
estimates

(6.21) K () VE (@) < —

Cn for x # 0.
|z

|§|x|ﬁ,

One such situation was described in Proposition 6.9.

Here we make an additional assumption about K. We assume that K €

C1(R™\ {0}) is homogenelus of degree 1 — n, i.e.
K(z/|x)

Since K is bounded in {|z| > 1} and integrable in {|z| < 1} we have K €
S) and there is no need to interpret K through the principal value of the
integral. The first estimate at (6.21) is satisfied. To see that the second
estimate if satisfied too we observe that VK is homogeneous of degree —n.
Indeed, for 1 <j<nandt>0

gg(tx)t = 6(; (K(tx)) = tl—”aij K(z)
and hence
(VK)(tz) =t "VK(x).
Thus
VK(z) = (VK|)x(|i/|x!)7 x#0

from which the second estimate at (6.21) follows.

Observe that VK (x) is not integrable at any neighborhood of 0, but we
may try to consider the principal value of VK (), i.e. the principal value of
each of the partial derivatives 0K /0z;. To do this we have to check if the
condition (6.14) is satisfied.

Theorem 6.16. Suppose that K € C*(R"\ {0}) is homogeneous of degree
1 —n. Then VK(x) is homogeneous of degree —n. Moreover

(6.22) VK (0)do() =0.
S’nfl
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Hence the condition (6.14) is satisfied and thus
pv.VK(z) €S,
is a well defined tempered distribution, i.e. for each 1 < j <n

0K

i /
p.v. oz, (x) €S,

Finally the distributional gradient VK satisfies

(6.23) VK =cdp + p.v. VK(z) ,
dist. pointwise
where
T
c= K(z)— do(z).
Sgn—1 ’CL‘|

In other words for p € S, and 1 < j < n we have

0K o Op o . 0K
g A== [ K@ gl @ =eipl0) + iy | S @) de,
where
Lj
¢ = K(z) —do(x).
gn—1 |z]

Proof. We already checked that VK (z) is homogeneous of degree —n. For
r>1let A(1,7) ={x: 1 <|z| <r}. From the integration by parts formula
(6.12) we have

/ VK(z)ds — / K () 7(z) do(z)
1<|z|<r 0A(1,r)

S K(z) — do(z) + K(z) — do(z) = 0.

|z|=1 "T‘ |x|=r |x’

Indeed, the last two integrals are equal by a simple change of variables
and homogeneity of K. Thus the integral on the left hand side equals 0
independently of r. Hence its derivative with respect to r is also equal zero.

d

Oza

/ VK(z)dx = VK(0)do(8).
r=1% Ji<fal<r |z|=1

This proves (6.22). Therefore p.v.VK(z) € S, is a well defined tempered
distribution. We are left with the proof that the distributional gradient VK



HARMONIC ANALYSIS 111

satisfies (6.23). Let ¢ € S,. We have

VK[p] = — . K(x)Vo(z)dz
= ii—%RlE%O_/aquRK(x)vw(x) dz
~ i lim. ( / oy V@ o) o /8 o K@) 7 do’(a:))
_ i%( . VK (z) () da + . K(:U)go(x)‘;da(x)) .
It remains to prove that
lim K (2)p(z) — do(z) = (0) K(z) — do(x).
€20 J)z|=¢ |z| z|=1 ||
Let
c= K(z) = do(z) = K(z) = do(z).
2 =1 || o] =< |z|

The last equality follows from a simple change of variables and homogeneity
of K. We have

(6.24) o K(:U)Lp(a:)‘%da(:c)
— cp(0) + /I _K@)(pl) ~ p(0) ot
—  cp(0)

as € — 0. Indeed, for |z| = ¢

K(z)(¢(z) — 9(0)) ﬁ < Celne = 02,
x
Since the surface area of the sphere {|z| = ¢} is nw,e" !, the integral on
the right hand side of (6.24) converges to 0 with ¢ — 0. O

6.4. Integral representations of functions. A straightforward applica-
tion of the above theorem gives a well known formula for the fundamental
solution to the Laplace equation.

Theorem 6.17. For n > 2 we have
Ad = ¢,
where

% log |z| ifn=2,

L i ifn > 3.

T nn—2)w, [z["2
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Proof. We will prove the theorem for n > 3, but a similar argument works
for n = 2. According to Theorem 6.15

1
(6.25) Vo = ”“"

nwy, |x|"
in the sense of distributions.?? Note that the function ®(x) is harmonic in
R™\ {0} and hence

. 1 < 0 zj
0=A®(x) =divVe(z) = . 83: an
"=

for z # 0.

Now Theorem 6.16 gives a formula for the distributional Laplacean

1 = ;
AD = dlvV@—c<50+ pv.z(;z.g’gn:céo,

j=1""
| S ——
0
where
1
Z / - do () = — / do(z) =
1V z|= 1 NWn |.CL" ’$| NWn J|z|=1
The proof is complete. o

For ¢ € S,, let u(z) = (® * ¢)(x). Then® u € C*(R") and

Au(z) = AP x p)(z) = ((AP) * p) () = (do * p)(z) = p(z).
Hence convolution with the fundamental solution of the Laplace operator
provides an explicit solution to the Poisson equation

Au=¢

This explains the importance of the fundamental solution in partial differ-
ential equations.

Observe that the above calculation gives also

p(r) = A(®xp)(r)
n 82
= Z@(@w)(af)
0P Oy

- ;(8% 837]>(x)

= /nVQ(fB—y%WP(y)dy
_ 1 / (@ —y)-Vely) ,
= y

nwn [z =yl

32Formula (6.25) is also true for n = 2.
33As a convolution of ® € S, with ¢ € S,.
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for every x € R™. In the last equality we employed (6.25). Thus we proved
Theorem 6.18. For ¢ € S,, n > 2 we have

o(r) = 1 /n (z —y) - Vely) dy for all z € R™.

nwn, |z —y|"

From this theorem we can conclude a similar result for higher order deriva-
tives.

Theorem 6.19. For p € S,, n > 2 and m > 1 we have

/ Z —y)° dy for all z € R™.
nwn n

jaf=m "

Proof. Fix x € R™ and define

o — )
P(y) = |Z Dﬁw(y)(my)-
Bl<m—1

Then ¢(x) = go(a:) and®!

= Y D) (z—y)f

J |Bl=m—1 &
where® §; = (0,...,1,...,0). Hence Theorem 6.18 applied to 1 yields
pz) = ¥(z)
n
nwn JEn dy; 77 | —y|"
1 ¢ o —y)f oy
" =1 pl=m—1 /R ' Y
_m Dp(y) (x —y)*
- Y,
nwy, re ol Jz—y|?
la|l=m
because for a with |a| =m
I m
> G a
7,B: B+6=c
The proof is complete. o

For 0 < a < n and n > 2 we define the Riesz potentials by

(o)) = — /R A

(@) Jrn |2 =y

3hwe compute 0v/0y; using the Leibniz rule and observe that the lower order terms
cancel out.

351 on jth coordinate, 0 otherwise.
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where
w20 (5)
T (#52)
In particular, when n > 3, Iyf is the convolution with the fundamental
solution to the Laplace operator taken with the minus sign, so for ¢ € S,

—A(Lp)(x) = p(z).

If @ = 1, then, up to a constant, I f is a convolution with the distribution

|zt~ e S
n—1
(1)) = L) / 1wy,
2 R

n |z —y[rt

V(a) =

2

™
Hence for ¢ € §,,, I1p € C* and Proposition 6.9 gives
-1

9 r("7) Tj — Y,
(I —(1—n)—2tpy [ I = —Rip(x).
aa:j( 1p)(z) = (1 —n) S = PV /Rn g e(y) dy = —R;jp(z)

Thus the Riesz operators appear naturally as derivatives of the integral
operator 1. We proved

Proposition 6.20. Ifn > 2 and ¢ € S,, then for 1 <j<mn

r("zY) 3/ () dy = —Ro(s).
R

or aTCJ n |z =yt

7. SINGULAR INTEGRALS I
For Q € LY(S"~1) with

(7.1) /S Q6)do(8) =0

we define

Kq(x) = ———, x#0.

Then for ¢ € S,, we define the tempered distribution

Wale] = p.v. . Kq(z)p(z) dz
= il—r{(l) ‘xQEKQ(x)cp(x)dx

As in the case of Theorem 5.1 one can prove that for ¢ € S, the limit exists
and defines W € S),. Note that the condition (7.1) plays an essential role
in the proof.

The following result generalizes Theorem 6.1.
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Theorem 7.1. Let n > 2 and Q € L'(S™"1) be such that

/ Q(0) do(6) = 0.
Sn—l

Then the Fourier transform of the distribution Wq is a finite a.e. function
given by the formula

12 W) = [ 00 (log iy - G sm(e-0)) doto)

1 im ,
_ /SH Q(6) (log a3 .9)> do ().
where & = ¢/|¢].

Before we prove the theorem we start with some auxiliary results.

Lemma 7.2. Let K be a function of one variable, then for n > 2 we have

n—3

1
K(z-0)do(0) = (n — 1)wn 1 /_1K(sx|)(1—32) = ds

Sn—1
for all x € R™\ {0}.

This result follows from arguments similar to those used to establish (6.7);
we leave details to the reader as an exercise.

Lemma 7.3. If h : [0,00) — R is continuous, bounded and the improper

integral
< h
/ () o
1 S

converges, then for p > A >0 and N > e > 0 we have

(7.3) /sNst‘ < 21| log (%) .
Moreover
(7.4) lim ! W ds = 1(0) log (;) .

Proof. We have
/N B(\s) — h(us) /AN h(s) /“N h(s)
——————Fds = —=ds — ds
5 A o

s e S P

= /#eh(s)ds—/MNh(S)ds.
e $ AN S

Estimating the absolute value of the last two integrals gives (7.3). Since

//\Mah(s)dséh(())logc)f) ase — 0

c S
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and
uN
/ @ ds—>0 as N — o0
AN S
(7.4) follows. O
Corollary 7.4. For a # 0 we have
I N g=isa _ o5 g d ) 1 T
im ————————ds=log— —i—sgna
NI s &la] 2%

e—0 €

and the integral s bounded by a constant independent of € and N.

Proof. We have
/N e~ — cos s ds — /N cos(sa) — cos s ds — i/N sin(sa) s
13 S g g

S S

N _ N
_ / cos(slal) —coss isen (a)/ sin(s|al) s
€ € $

S

and the result follows from Lemma 7.3. O

Proof of Theorem 7.1. First observe that the last equality in (7.2) follows
from

1

= +log ——
ISR

log —— log

€ - 9|
and the fact that

/S"_IQ(G) logmda( )=0.

Let F (&) be the function defined by the integral in the second line of (7.2).
We will show first that F' is finite a.e. and that it actually defines a tempered
distribution. Note that

[ 20 T sen(e0)do0)
Snfl

is a bounded function of £, so this component of F'(£) does not cause any
troubles and hence we only need to estimate

Gl&) = [ 90) 108 17 do(0).

We need to show that the integral is finite for a.e. £ and that
Gle] = A G(&)p(&) dg

is a tempered distribution, ¢ € S,. To this end it suffices to show that the
function G(&)p(§) is integrable along with suitable estimates for its integral.
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We have
Glel < [l [ 100l oy

_ oosn—l s o < do
= /Sn1 Q@) /SM! (£)Ilg|£, g do(¢ ") ds do(8)
= 0.

Lemma 7.2 gives

1 !/
(7.5) /Snl log R do (&)
1

= (n— 1)wn1/ <log ! > (1— SQ)RT_3 ds = cp < 0

1 ]

and hence

3
IN

Cn / Q(0) |/ Lsup |o(€)| ds do(6)
sn=1 I€]=s

ClIQl Ly (sn-1) (HwHoo + sup !5!”“!@(5)\) :
£eRn

IN

This proves that G is finite a.e. and defines a tempered distribution, so does
F.

Now we are ready to prove formula (7.2). Let & = £/|¢|. We have

Walie] = Wal¢]
- o
B E’Ii e 7 / <fr|<N Q(!Z/"‘xb e dodg
.
- JRGY R CY Rt 0L
= i [ e0 [ 0o [ (e con(zmsle)) % doto)
- 0.

The last equality follows from the fact that the integral of €2 over the sphere
vanishes. We have

2m|¢E|N —isf-€’

N .
. d — cos
/ (67271'159-5 _ cos(27r3]£|)) ?‘9 — /2 $ ds

€ 7r|£\€
iz sen (0-¢)

— log|9 £/|— 5
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by Corollary 7.4 and hence the dominated convergence theorem gives

o = [ o0 [ 00 (1og 51 - G sen(0-¢)) doto)de.

The proof is complete. O

If 2 is an odd function, i.e. 2(0) = —Q(—6), then the integral of ) against
log(1/]¢€ - 0]) vanishes and hence
— v
Wa(€) = 2 Jon Q(0)sgn (¢ - 0)do(0).

In particular the Fourier transform WE is bounded. More generally any
function Q on S™~! can be decomposed into its even and odd parts

0.(0) = 5(000) + O(~0),  Qu0) = S(U0) ~ A-0)

Corollary 7.5. Let Q € L*(S" 1) be such that
/ Q0)do(0) =0.
Sn—1

If Q, € LY(S™ 1) and Q. € LI(S™') for some q¢ > 1, then the Fourier
transform of Wq is a bounded function.

Proof. A calculation similar to (7.5) implies that log(1/[¢’-6]) is integrable
over S"~! with any positive exponent. In particular it belongs to Lq/(S"*I)
and hence

1 ,
[, 02e0) (108 gy = s (€-0)) do®)] < Cl sy

with a constant C' independent of . Now the formula (7.2) yields

s

Wal6) = D) Sn_lQO(Q)SgH(S'-G)da(e)
#8018 g - o€ 0) ao

from which we have
[Walloo < CUI|L1sn-1) + 1QellLa(sn-1y) -

The proof is complete. O

Convolutions with Wq, i.e. operators of the form

Tof(z) = (Wo + f)(z) = lim /| | Q) f, g ay
y|=>e

e—0 ly|™

are called singular integrals. Examples include the Hilbert transform and
the Riesz transforms.
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If © satisfies assumptions of Corollary 7.5, then the singular integral Tq
uniquely extends from S, to a bounded operator on L?. However we are
interested to see whether there is a more direct formula to define Tq f(z)
when f € L? without using the density argument. Moreover we want to
know if the operator is bounded in LP for p # 2. More precisely we want to
know if Corollary 5.17 proved for the Hilbert transform generalizes to the
more general class of singular integrals Tq.

DEFINITION. For a function € L'(S"~1) with vanishing integral and f €
LP(S™1), 1 < p < 0o we define the truncated singular integral

Tg(;’N)f(a:) B /a<|y<N w fe—y)dy, 0<e<h.

Note that

N
IS ™ Flly < 119011 501y log(N/2) | 1l

and hence Tg(f’N) f is well defined. The mazximal singular integral is defined

by
" N
Tsf@) = swp |5 ().
0<e<N<oo
In an important case when € is bounded,>® Q(y/|y|)/|y|" belongs to
Li({ly] > e}) for any 1 < ¢ < oo and hence for f € LP, 1 < p < 0
the integral
Q(y/ly
i) = [ U ey
M
is finite. Since

Taf(w) = lim 75 f()

and

TN f(a) = Tof (x) — TS f ()
we have
(7.6 5Tl (@) < sup|T5 (@) < Taf (2)

and hence in the case in which 2 is bounded we could define the maximal
singular operator as the left hand side of (7.6).

7.1. The method of rotations. The following result proves boundedness
of singular integrals in LP, 1 < p < oco. The proof is based on the so called
method of rotations.

Theorem 7.6. If Q € L'(S"71) is an odd function, then T is of strong
type (p,p) for all 1 < p < co. In particular T uniquely extends from S, to
a bounded operator in LP(R™), 1 < p < c0.

36This covers the case of the Hilbert transform, the Riesz transform and more generally
the case of transforms with the kernel Py(x)/|z|""*.
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Proof. The idea is to show that the singular integral T f is an aver-
age over all possible directions in R" of one dimensional directional Hilbert
transforms and then the result will follow from the corresponding results
about boundedness of one dimensional Hilbert transform.

If eq is the direction of the first coordinate, then the operator
1 & —t
He, f(z) = =p.v. / Jla—te) dt
U oo t

is bounded in LP(R"), 1 < p < oco. Indeed, for a.e. (x9,...,2,) € R*! the

function z — f(z,x2,...,x,) belongs to LP(R) and hence the one dimen-
sional truncated Hilbert transform applied to the first coordinate
1 flz—t,xa,...,2p)

Héf(z,za,...,2y) = — dt

T Jjt|>e t

converges a.e. with respect to z and in LP(R) to the Hilbert transform ap-
plied to the first coordinate, which is H, f(z, z2, ..., x,), see Corollary 5.17.
Hence the Fubini theorem yields

|He fllp = /.../]Helf(z,xg,...,zn)|pdzda:g,...dxn
R R

< C(p)p/ / |f(z,22,...,2n)|Pdzdzy ... dz,
R R
= CEPIfIE
where C(p) stands for the norm of the Hilbert transform in LP(R).

Now for a direction § € S"~! we define the directional Hilbert transform

as
Hgf(x):ip.v./_ f(xt_te)dt.

The directional Hilbert transform commutes with the orthogonal transfor-
mations, i.e. for p € O(n)

Hp(el)f(x) = Hel (f © p)(f)_lx) :

This identity follows immediately from the definition of Hyf. Hence Hy is
bounded in LP with the norm independent of

[ Ho fllp < C) flp-
Similarly for f € LP(R"), 1 < p < oo we define

HEN o L fla—10) ,
O o '

m t

(7.7) Hif(x)= sup [HSVf(@).
0<e<N<oo
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The two operators also commute with the orthogonal transformations and
hence boundedness of Hj in LP, 1 < p < oo will follow from the boundedness
if H .
Observe that for the one dimensional Hilbert transform
|HEN g(2)| < [HN g(x)| + |H g ()]

and hence

sup |HENg(2)| < 2H*g(x)
0<e<N

where??

H*g(x) = sup [Hg(z)].
e>0
Thus boundedness of H;, in LP, 1 < p < oo follows from Corollary 5.16 and
the Fubini theorem. Then also Hj is bounded in LP, 1 < p < oo with a

constant independent of

1Hg fllp < 2A()I1flp
where A(p) is the LP norm of the operator H* : LP(R) — LP(R).

Now we will show how to represent the singular integral Tq, f as an average
of directional Hilbert transforms. For f € LP(R"), 1 < p < oo we have

Q/lyl) . _ N f(x —t0) -
/s§|y|§N flx—y)dy = +/Sn1 Q(G)/€ dt do(0)

ly|™ t
B Nf(a:+t9)
_ —/Sn_l Q(&)/g DX 4t o ).

The first equality is just the representation of the integral in polar coordi-
nates, while the second one follows from the change of variables 6 — —68 and
the fact that Q(—6) = —Q(0). Hence

Qy/lyl) ¢
(7.8) /E<|y|<N P flx—y)dy

N xr — — X
_ ;/SMQ(Q)/E I w)tf( 1) 4t dor(9)

s

- /5 0@ () do(6).
Thus
Taf@) < [ 190)1H; @) do 0)
and for 1 < p < oo the Minkowski integral inequality yields
1T fllp <A@ Ly (sn—1) Lf [l -

370Observe that the definition of H*g is not consistent with the definition of Hy f. In
the first definition we take supremum over € > 0, while in the second one supremum over
0 < € < N. However, we need the maximal function H"g, because we want to apply
Corollary 5.16.
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The proof is complete. o
Note that for ¢ € S,,, H, (gg’N)cp(:):) is bounded by a constant independent
of &, N and 60, so passing to the limit in (7.8) yields
™

Top(x) = 0 /Snl Q(0)Hgp(x)do(0) .

Corollary 7.7. If Q € L'(S™') is an odd function, and f € LP(R"),

1< p<oo, thenTS(;’N)f —Taf a.e. and in LP ase — 0 and N — oo. If in
addition € is a bounded function, then Tqf — Tof a.e. and in LP ase — 0.

The proof is almost the same as that for Corollary 5.17; we leave details
to the reader.

One can actually prove a stronger result.

Theorem 7.8. If Q € L'(S" 1) has vanishing integral and Q. € L9(S™1)
for some ¢ > 1, then for any 1 < p < oo there is a constant C' > 0 such that
ITagllp < Cllellp, ¢ € Sn-

Hence Tq uniquely extends to a bounded operator on LP. Moreover for f €
LP(R™), TéE’N)f —Taf a.e. and in LP ase — 0, N — co.

The estimate for the odd part of €2 was done above, so we can assume
that € is even, i.e. ) = Q) € LY. In this case the method of rotations cannot
be applied directly. However since

iR? =1
j=1

we have, at least formally,

n

Tof ==Y RiTof) = =) Rj(RjTaf).

j=1 j=1

The operator R;Tq, is odd as a composition of an even and an odd operator,
so we can apply the method of rotations to estimate it. However, the details
are not as easy as they seem and we will prove it.

8. SINGULAR INTEGRALS II

So far we investigated boundedness of singular integrals for 1 < p <
oo, without investigating the case p = 1, but it turns out that a more
powerful method is based on the weak (1, 1) estimates and the Marcinkiewicz
interpolation theorem. First we will consider the simplest case of the Hilbert
transform.
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8.1. Hilbert transform again. We proved that the Hilbert transform is
bounded in L, 1 < p < oo by two different methods. We will add one
more method now. Namely we will show that the Hilbert transform is of
weak type (1,1). This fact, the Marcinkiewicz interpolation theorem and a
duality argument will easily imply boundedness of the Hilbert transform in
LP for all 1 < p < o0.

Theorem 8.1 (Kolmogorov). The Hilbert transform in of weak type (1,1).
More precisely for f € L' N L?(R) we have

o e R: Hf@)| > 0] < O 7l

In the proof we will use boundedness of the Hilbert transform in L?,
Theorem 5.3, and we will not refer to any result proved after Theorem 5.3.
In particular the Hilbert transform in Kolmogorov’s theorem is defined on L?
as an extension from S(R). As we already mentioned Kolmogorov’s theorem
implies

Corollary 8.2 (Riesz). The Hilbert transform is bounded in LP, 1 < p < oo,
[H fllp < Cllflly  for f e SER).

Proof. Since the Hilbert transform is bounded in L? (Theorem 5.3) and of
weak type (1, 1), the Marcinkiewicz interpolation theorem implies that for
all 1 < p <2,

IHfllp < Cpllfllp, fe€SR).

Now the duality argument, Theorem 4.6, yields that for all 2 < p < co we
also have

[Hfllp < Cpllfllp,  f€SR).
More directly, the duality argument goes as follows. For f,¢g € S(R) and

e > 0 we have
/H€f~g=/f‘Hsg-
R R

Letting ¢ — 0 and using the fact that H°u — Hu in L? for u € L? (Theo-

rem 5.3) we have
[H9=[ 19
R R

sop{| [ 115 -9]  1ally <1}
sap | [ -110] < ol <1}

[ fllpsup{|Hglly : llglly <1}
Cp’Hpr-

Now if 2 < p < oo, then

1H flp

VANVAN
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The proof is complete. o

Proof of Theorem 8.1. We can assume that f > 0. Indeed, every complex-
valued function is a linear combination of nonnegative functions: positive
and negative parts of real and imaginary part of the function.

We fix t > 0 and apply the Calderén-Zygmund decomposition (Theo-
rem 1.13 and Corollary 1.14) to f and a = t. We obtain non-overlapping
intervals {I;} such that

f(z) <t forae z¢g Q=1
1
9 < 2 1l

t§][ f<o2t, j=1,2,3,...
I;

This allows us to represent f as a sum of two functions f = g+ b (good and
bad) that are defined as follows

fa) iz
I

and

b(z) = Z bj(z),

J=1

by(a) = (f(x) -+ f) X1, ()

Note that g € L= N L%, Indeed, 0 < g < 2t and

where

(8.1) /g(x)de < 2t/ o) de = 21| |1,
R R
Hence also b € L2(R). Actually it is easy to see that
[@par<a [ 5@p .
R I;

so the series Zj b; converges to b in L?. Since Hf = Hg + Hb we have

{IHfI >t} < {[Hgl > t/2}] + [{|Hb] > 1/2}].
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The estimate for the first term on the right hand side is easy, which explains
the name “good” for g. We have

o> < (2) [ e

- (Dé@m@%w

8
Z 11

We used here the fact that H is an isometry on L? and inequality (8.1). The
estimate for the second term is more involved (so the name “bad” for b).
Let 21; be the interval concentric with I; of twice the length. Define

o =25,
J

IN

Clearly
N 2
97 <200l <> 7]l
We have
{z eR: [Hb(z)| >t/2} < [QF+ [{zgQ": |Hb(z)| >1t/2}
<

2 2
£ +5 [ |Hba) do.
Thus to complete the proof it remains to show that

/‘ |Hb(x)| dz < C| £l
R\Q*
Observe that

(8.2) |Hb(z)| < Z |Hb;(z)| ae.

Indeed, for every k we have

k k 00
D b || <D IHD <) [Hb| ace.
j=1 i=1

and it remains to use the fact that Z?Zl b; converges to b in L? as k — o0
and that H is bounded in L?. Inequality (8.2) gives

Hb(z)| < / Hbj(x)|dx < / Hbj(x)| dx .
JRELC Y [y RN [ a0
Note that for = & 2I;
1 b;
) =+ [ 2 g,
1

)T —y
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because b; vanishes outside I;, x is away from I; and hence there is no
singularity in the denominator. Let c¢; be the center of the interval I;. Since

the integral of b; equals 0 we have
b
Ij r—=Yy

[ i@l =
R\21, R\21,
1 1
- /bj<y>< Lo ,)dy
R\27; |/, r—y TG

[l [ ) ay
I; R\2I; [z =yl |z — ¢
I,
< [l [ ).
I; R\2I, |z — ¢

The last inequality follows from a simple geometric observation that |y—c;| <
|1;]/2 and |z — y| > |& — ¢;|/2. Since

I
/ Ll 5 dr =2
R\21; |z — ¢

dx

dx

IN

we have
/ Hb(z)|dw < Z/ |Hby(2)] do
R\Q* 5 JR\2I
< 23 [ Iy
i i
< Afl-
The proof is complete. o

In order to prove pointwise and LP convergence of H¢f to Hf for f €
LP 1 < p < oo we needed to prove boundedness of the maximal Hilbert
transform in LP. We complement this result by showing that the maximal
Hilbert transform is of weak type (1,1).

Theorem 8.3. H* is of weak type (1,1). More precisely

Hz:R: H f(x) > t}| < % Iflli for all f € LY(R).

Proof. The proof follows similar steps to those employed in the proof of
Theorem 8.1. We can assume that f > 0. Fix ¢ > 0 and apply the Calderén-
Zygmund decomposition to f and a = t. As in the proof of Theorem 8.1 we
decompose f =g+ b, so

{H™f >t} < |{H"g > t/2}| + {H b > 1/2}].
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Note that g € LN L*>° and hence g e L2. Since 0 < g < 2t we have

l/mmwxsm/gmezﬁwn.
R R

Since H* is bounded in L? (Theorem 5.16) we get

c
{Hg > t/2} < — |Ifllx

by the same argument as in the proof of Theorem 8.1 and in order to estimate
[{H*b > t/2}| it suffices to show that

o g Qs H'b(a) > t/2} < | 7]l

Fix ¢ € Q*, ¢ > 0 and a function b;. Recall that the function vanishes
outside ;. Denote by c; the center of I;. Clearly x ¢ 2I; and one of the
following conditions is satisfied

(a) ($—8,$+€)ﬂljzfj;
(b) (z—ca+e)n L=
(c)x—eceljorx+ecl.

In the first case H*bj(x) = 0 and in the second one

o= | Se [ (g2 o

J

In either the first or second case we have

83 ()< /Wb 2”' /|f ) dy.

CJ’2 J|2

In the third case, since x ¢ 21;, we have I; C ($—35,x+35 )and |[x—y| > ¢/3
for all y € I}, so

b‘ y 3 z+3e
(3.4) O YR T
I; ’:U - y| € Jz—3¢
Since b=3_,b; € L' and the function
1
Yy oo y X{y: la—y|>e}

is bounded we have
-3 C
|z~ y\>€ T =

for every x, so

[H"b(x)| < Z |Hbj(x)
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everywhere. Adding up the estimates (8.3) and (8.4) for all j we obtain

b 2 I 3 43¢
7 |<§j'gp/ﬁf w2 [ play.

—3e

) <18Mb(z)

Since this estimate is valid for every z and every € > 0 taking the supremum
over € we have

H*b(z) < h(z) + 18Mb(z).

Thus
{2 g O H'b(2) > )2} < Ho & Q' h(z) > t/4)]
+ |z eR: Mb(z) >t/72}]
4 C
< t/R\Q* h(x)|dx+t/R|b(x)|dx
< Sl
because
[ bz <21l
R
and

2|1;|
h(z)|dx < /fy dy/ I dx < 4| fl .
[ 1) X s [ e e < I

4

The proof is complete. o
Applying Theorem 5.18 we immediately obtain
Theorem 8.4. For all f € L'(R) the limit
Hf(x) = lim H*f(z)
ezrists a.e. and

o e®: Hf(@) >0 < |7l

The last inequality is a slight improvement of Theorem 8.1, because it is
true for all f € L' and not only for f € L' N L?. Note that in this theorem
the Hilbert transform of f € L' is defined as the pointwise limit and not
through the density argument.
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8.2. Calderdon-Zygmund theory of singular integrals. The method of
the proof of boundedness of the Hilbert transform in LP presented above
easily generalizes to the case of multi-dimensional singular integrals.

DEFINITION. Let K € S}, be a tempered distribution such that
(a) K € L*®(R");

a
(b) K coincides with a locally integrable function in R™ \ {0};
(¢) K(z), z # 0 satisfies the Hormander condition

[ K@=y - K@)l < B
|z[>2y|
for some constant B > 0 and all y € R"™.

Then the convolution operator
To(x) = (K x@)(x), ¢ €Sn
is called a singular integral.
At this moment it is not clear how the class of singular integrals defined
here is related to that defined in Section 7 as convolution with Wq. The
two classes are not the same, but strongly related. We will investigate this

relationship later, but now we will prove the main result about boundedness
in LP of the singular integrals defined here.

Observe that the condition (a) implies

ITell2 < Kl llollz, ¢ € Sn

so the operator 7" uniquely extends to a bounded operator in L?(R").

Theorem 8.5 (Calderén-Zygmund). If T is a singular integral as defined
above, then

(8.5) 1Tl < Collfll, for f € L2ALP, 1< p < oo
and
(86)  HeeR: [T7@)|>0< S flh forfe LN

Remark. In this theorem T'f for f € LP N L? is understood as the exten-
sion of T from S,, to L?.

Proof. The proof is similar to that of Theorem 8.1 and 8.2. We will prove
first (8.6). We can assume that f > 0. Fix ¢ > 0 and apply the Calderén-
Zygmund decomposition to f and « = t. We have

flx) <t fora.e.ng:Uij

1
91 5 1,
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t<4 f<2m, j=1,2,3,...

Qj
Next we decompose f = g + b, where
flx) ifxé&Q,
g(x) =
f itz e@;
Qj

and
D CCHNUCE (f(x) -4 f) x,(@).

Observe that g € L' N L™=, 0 < g(x) < 2"t and hence

/n g(x)*dr < 2™ /Rn g(z)dz = 2"t|| f]|1 .

/ b2 < 4/ P,
R™ Qj

so the series > i bj converges to b in L?. Since T is bounded in L? we easily
conclude that

Moreover

|Tb(x)| < Z |Tbj(x)] a.e.

We have
{ITrI >t} < RITgl > t/2} + {I|T0] > ¢/2}].
The estimate for the first term on the right hand side is easy

s> i< (2) [ o< [ o< s

Let QF = 2y/nQ; be a cube concentric with @; hose sides are 2y/n times
longer and let
-Ua.
J

Clearly
Cl
2 < Claf < —[I£ll-
We have
{z e R" : [Tb(x)| >t/2}) < [+ [{z ¢ Q" : |[Tb(z)| >t/2}]

C 2

S+ / ITb(z)| da
R™\Q*

C

s+ 2 Z/ T80 ds

IN

IN
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and it remains to show that

[ @l sc [ (i@)d.
R™M\Q; Qj

Denote the common center of the cubes ; and Q;‘f by ¢;. If z & Q;f, then

Tbj(x) = o K(z —y)b;(y) dz.

Since fQj b;j(y) dy = 0 we have

b, () = /Q_ (K(z —y) — Kz — ¢;)) bj(y) dy

and hence

/Rn\@; Tbj(z)|dz < /'ij(’y)| (/RR\Q; K(z —y) — K(z — cj)|dx> dy

J

< B/ b3 (v)| dy

Qj
< 28 [ Iy,
Qj
because an easy geometric investigation shows that
R"\ Q; C{zx e R": [z —¢;| > 2|y — ¢}
and hence the above estimate follows from Hormander’s condition. This
completes the proof of (8.6). Since the operator is bounded in L? and of
weak type (1,1), the Marcinkiewicz interpolation theorem implies (8.5) for

1 < p < 2 and then the case 2 < p < oo follows from the case 1 < p < 2 by
a duality argument, Theorem 4.6. O

The conditions (a) and (c) in the definition of the singular integral seem
difficult to verify, so we will investigate now sufficient and easy to verify
conditions that imply (a) or (c). We will also compare the class of singular
integrals considered in this section to that considered in Section 7. Let us
start with the condition (c).

Proposition 8.6. If K € CY(R"\ {0}) is such that
C
then the function K satisfies the Hormander condition.
Proof. Points on the interval connecting x to (z —y) are of the form x —ty,
t € [0,1], so for |z| > 2|y|
]

_t > —
v —ty] > =
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and hence the mean value theorem gives

|yl
Kz —vy) — K(z)| < .
’ (.’I} y) (CL‘)’ — C’x‘n+1

Thus the Hérmander condition follows upon integration in polar coordinates.
OdJ

The condition (8.7) is very easy to check and it covers majority of singular
integrals that appear in applications. For example if Q € C1(S"71),

/ Q0) do(0) =0
Sn—l

and q
K(z) =p.v. 7(1,/’3;‘)

||

then K € L* by Corollary 7.5 and
C
[VE(z)| < Wa z 70

since VK is homogeneous of degree —(n + 1). Thus

Q(y/lvl)

Tae(x) = (K * p)(z) = lim e ol

—y)d
lim p(r —y)dy
is the singular integral in the sense described above.

Actually a weaker assumption about 2 implies the Hérmander condition.

Theorem 8.7. Let Q € C(S™ 1) be such that

(8.8) /01 Woolt) 11 o,

t
where
woo (1) = sup{|Q(61) — Q)| : |61 — O] < t, 61,00 € "'}
Then the function
Ky~ 2

|z["
satisfies the Hormander condition. In particular the Hormander condition
is satisfied if QU is Holder continuous with exponent 0 < a < 1.

Remark. (8.8) is called a Dini-type condition.

Proof. With the notation ¢ = £/|¢| we have
Oy o)

|z —y[" B
2((z —y)') — Q)]

|z —y|"

|K(z —y) - K(2)] =

1 1

(8.9)

IN

+1a)]|

o —yln ol
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The function  is bounded and the function 1/|x|™ satisfies the Hormander
condition by Proposition 8.6 so the integral of the second term in (8.9)
over the region {|z| > 2|y|} is bounded by a constant independent of y. To
estimate the first term in (8.9) observe that

T —y x

bl
||

[z —yl |z

The inequality easily follows from the picture

MZh:sma St A ZQ St A ,
|| lz—yl 2l T 2 Jlz—yl |zl
Hence
[ e 0w, [ Gl
lz|>2ly] |z —y|" T Jwso (z]/2)"
o0
— 2n|Sn—1’ tn—leO(QJLth) dt
2ly| ¢
1
= Z"nwn/ CL)m%(t)dt<oo.
0 t
The proof is complete. O

Thus if Q € C(S) satisfies

/ Q(0) do(6) = 0
S’ﬂ*l
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and the Dini-type condition (8.8), then

Top(x) = p-v. /n Q(‘%Ly) oz —y)dy

is the singular integral as defined above. In particular it is of strong type
(p,p), 1 < p < oo and of weak type (1,1). Observe that in Section 7 we
proved strong type (p,p), 1 < p < oo of the singular integral associated
with odd €) that is just integrable, Theorem 7.6, and now we require some
additional Dini-type regularity. It is natural to inquire if in the setting of
Theorem 7.6 we can also prove the weak type (1, 1). Surprisingly, the answer
is not known.

While we have seen situations where the Hormander condition was sat-
isfied, we still need to see when the condition (a) holds true. Now we will
investigate sufficient conditions for the convolution with the principal value
of K € Ll _(R"\ {0}) to be a singular integral. This will include investiga-

tion of conditions for p.v. K € ), and p/v7( € L*. We will consider the
following properties

(8.10) / K (2)| dz < Cy
r<l|z|<2r

for some C7 > 0 and all r > 0.

(8.11) / K(x)dz| < Co
r<|z|<R
for some Cy > 0 and all 0 < r < R.
(8.12) lim K(x)dr exists and is finite.
=0 Jeclal<1
(8.13) / K(z — ) — K(z)|dz < C
|=[>2[y]

for some C3 > 0 and all y € R™.

The last condition is nothing but the Héormander condition. Observe that
(8.10) is equivalent to

(8.14) / 12| K ()| dz < Car
|z|<r

for some C4 > 0 and all » > 0. Indeed,

/ 2| K@) de = 3 / 12l|K (2)| da
|z|<r o 27D r<|z| <2k

)
< Z 2_k7"01 =2Cr,
k=0
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so we can take Cy = 2C. In the other direction
Cy-2
/ \K(x)|da:§/ 21 g (@) dw < G220 0,
r<l|z|<2r lz|<2r T r

and we can take C7 = 2C4.

For example if K € C1(R™\ {0}) satisfies

C C
K < — K <
K@) < e VK@<

then the conditions (8.10) and (8.13) follow from the integration in polar
coordinates and Proposition 8.6.

The conditions (8.11) and (8.12) are true if the integral of K on every
sphere centered at the origin is zero and in general they constitute a weaker
form of this cancellation property. Observe that (8.12) is a necessary condi-
tion for p.v. K to be a tempered distribution. Indeed, if we take ¢ € C§°(R")
that is constant equal to 1 on the unit ball B(0,1) we have

p.v. K[p] = lim K(z)dx + K(z)p(x)dx.
£20 Jec|zl<1 |z|>1
Since the second integral on the right hand side is well defined and finite,
the limit (8.12) must exist.
Proposition 8.8. Suppose K € Ll (R"\ {0}) satisfies (8.10) and (8.12).
Then
p.v. K[p] = lim K(z)p(z)dx, €&,

e—0 |z|<e

defines a tempered distribution.

Proof. For ¢ € §,, we have

/ K@@l dr < [elplo Y 27" / K (2)] da
|z|>1 =0 2k < || <2kt
< 20 Il¢]e

Since [¢(z) — (0)| < |2[[[Vello

lim K(z)(p(x) = (0)) dz = K(z)((z) — ¢(0)) dz

20 Jeclz|<1 |z|<1

because of the estimate (8.14) with Cy = 2C. Denoting

L= ig% e<|z|<1 K($) e
we have
p.v. K[p] = Lp(0) + K(z)(p(x) — ¢(0)) dz + K(z)p(z) dx

lz|<1 |z|>1
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and hence

[pv. K[| < |Lf[[elloo + 2C1([Veplloo + 2]l ) -

The proof is complete. O

For K € L (R™\ {0} and 0 < € < R we define the truncated kernels by

loc
K. r = KX{c<|z|<R}
and
K. = KxX{jg|>¢) -
Theorem 8.9. If K € L. (R"\ {0}) satisfies (8.10), (8.11) and (8.13),

loc

then I/(e,\R € L>°(R"™) and

(8.15) e

for some constant C > 0 independent of ¢ and R. Moreover K. € S),
K. € L*(R"™) and
Ko < C

with the same constant as in (8.15).

Proof. Observe that for |y| < /2 the truncated kernel K. p satisfies a
version of the Hormander condition in a form described below

Ker(z—y) = Kep(z) = (K(z —y) = K(2)X{<|a)<r} (2)
+ K(:U - y) (X{€<|m—y|<R}(x) - X{a<\x|<R}($)) )

SO

/ |KE7R(m—y)—KE7R(x)\da;§/ |K(x —y) — K(x)| dz
R e<|z|<R

+ / K (@)] [Xectol<iy (2) — X(oclosol<ry (@)] da

Rn
/ K(z — ) —K(:L')]dx—l—/ K (2)) da
e<|z|<R

e—lyl<|z|<e+|y|
+ / |K (x)| dx
R—|y|<|z|<R+|y|

(8.16) < C5+4C;.

IN

Indeed, a simple geometric consideration shows that the symmetric differ-
ence of the two annuli {¢ < || < R} and {e < |z + y| < R} is contained
in

{e—lyl <lzl <e+lyl} U{R = |yl < || < R+ y[}-
and the last inequality follows from (8.10), (8.13) and the fact that |y| < e/2.



HARMONIC ANALYSIS 137

To estimate the Fourier transform of K. g observe first that

/ K(z)dx
e<|z|<R

so we may assume that £ # 0. Assume for a moment that ¢ < |¢|7! < R
and denote r = |£|71. We have

Ko p(€) = Ko (6) + Ko m(6).

First we will estimate the second term.

K, r(&) = / K, g(z)e ™28 dg

K. r(0)] = <Gy,

= / K, r(z — y)e 2miE)E gy
e27riy~§ / Kr,R(x _ y)e—Qﬂix~§ dr .
Taking y = $£|¢[~2 we have exp(2miy - £) = —1 and hence

K6 = ‘;/ (Krr(z) — Ky glo —y)) e 2 dg

1

5 / ‘KT,R(‘T - y) - KT,R(:’C)‘ dx
R

IN

1
< 5 Cs + 207,
by (8.16) since |y| = r/2.

For the other term we have

/e<w|<r Kiz) <€_2ﬂm5 - 1> o

< 27¢| |K ()| |z| dz + Cy
|z|<r
< 27r‘§] -2C1r + Oy

= 4nCy + 5.

In the case || < ¢ or |¢|7! > R we directly estimate @(f) without
splitting it into two parts. If |(|~ < e the estimate goes as that for K, g
and if [¢|7! > R as that for K. ,. We leave easy details to the reader.

1K..(6)] < +

/ K(z)dx
e<|z|<r

Now it is time to take care of K.. Observe first that K. € S, by an
estimate similar to that at the beginning of the proof of Proposition 8.8. We
have

Klp) = K:[¢] = lim K.pl¢] = lim K. zlg]

R—o0
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and hence .

| K< < Cllelh
for all p € S),. Thus ¢ — I/(\g[cp] extends to a bounded functional on L!(R"),
so K. € L™ and HI/(\EHOO < C'. The proof is complete. ]

Theorem 8.10 (Calderén-Zygmund). Suppose that K € Li _(R™\ {0})
satisfies (8.10), (8.11), (8.12) and (8.13). Then p.v. K is a tempered distri-
bution and the convolution with p.v. K,

To=(pv.K)xp, ¢eS§,
is a singular integral as defined in this section. In particular
ITfllp < Cpllfllp, for feLPNL?, 1 <p< oo,

o e B2 17 @) > 0} < S flh, for fe L' L2

Proof. We already proved in Proposition 8.8 that p.v. K € S, and accord-

ing to Theorem 8.5 it remains to show that I:f\K € L. For ¢ € S, we
have

(v K| = |tim K (]| = [im KZ[¢]| < Clglh
e—0 e—0
so p.v. K € L™ with ||p.v. Ko < C. O
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